Designs, Codes and Cryptography

, Volume 39, Issue 1, pp 39–49 | Cite as

Existence of Z-cyclic 3PTWh (p) for any Prime p≡ 1 (mod 4)



We show that a Z-cyclic triplewhist tournament on p players with three-person property, briefly 3PTWh(p), exists for any prime p≡ 1 (mod 4) with the only exceptions of p=5,13,17.


triplewhist tournament three-person property Z-cyclic 3PTWh Weil theorem 

AMS Classification

05B05 05B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. R. Abel, N. J. Finizio, G. Ge and M. Greig, New Z-cyclic triplewhist frames and triplewhist tournament designs, preprint.Google Scholar
  2. 2.
    R. J. R. Abel and G. Ge, Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments TWh(v), European J. Combin., in press.Google Scholar
  3. 3.
    Anderson, I., Finizio, N. J., Leonard, P. 1999New product theorems for Z-cyclic whist tournamentsJ. Combin. Theory Ser. A88162166CrossRefMathSciNetGoogle Scholar
  4. 4.
    Buratti, M. 2000Existence of Z-cyclic triplewhist tournaments for a prime number of playersJ. Combin. Theory Ser. A90315325MATHMathSciNetGoogle Scholar
  5. 5.
    Chang, Y., Ji, L. 2004Optimal (4up, 5, 1) optical orthogonal codesJ. Combin. Des.5346361MathSciNetGoogle Scholar
  6. 6.
    Finizio, N.J. 1995Z-cyclic triplewhist tournaments–the noncompatible case, Part 1J. Combin. Des.3135146MATHMathSciNetGoogle Scholar
  7. 7.
    Finizio, N. J. 1997Z-cyclic triplewhist tournaments–the noncompatible case, Part 2J. Combin. Des.5189201MATHMathSciNetGoogle Scholar
  8. 8.
    Ge, G., Lam, C. W. H. 2003Some new triplewhist tournaments TWh(v)J. Combin. Theory, Series A101153159MathSciNetGoogle Scholar
  9. 9.
    Ge, G., Ling, A. C. H. 2003A new construction for Z-cyclic whist tournamentsDiscrete Appl. Math.131643650CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ge, G., Zhu, L. 2001Frame constructions for Z-cyclic triplewhist tournamentsBull. Inst. Combin. Appl.325362MathSciNetGoogle Scholar
  11. 11.
    Haanpää, H., Kaski, P. 2005The near resolvable 2-(13,4,3) designs and thirteen-player whist tournamentsDes. Codes Crypt.35271285CrossRefGoogle Scholar
  12. 12.
    Haanpää, H., Östergård, P. R. J. 2003Classification of whist tournaments with up to 12 playersDiscrete Appl. Math.129399407MathSciNetGoogle Scholar
  13. 13.
    Liaw, Y. S. 1996Construction of Z-cyclic triplewhist tounamentsJ. Combin. Des.4219233CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Lu, Y., Zhu, L. 1997On the existence of triplewhist tournaments TWh(v)J. Combin. Des.5249256CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of MathematicsBeijing Jiaotong UniversityBeijingP. R. China

Personalised recommendations