Designs, Codes and Cryptography

, Volume 38, Issue 3, pp 337–361 | Cite as

On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots



A trace formula for quasi-cyclic codes over rings of characteristic not coprime with the co-index is derived. The main working tool is the Generalized Discrete Fourier Transform (GDFT), which in turn relies on the Hasse derivative of polynomials. A characterization of Type II self-dual quasi-cyclic codes of singly even co-index over finite fields of even characteristic follows. Implications for generator theory are shown. Explicit expressions for the combinatorial duocubic, duoquintic and duoseptic constructions in characteristic two over finite fields are given.


quasi-cyclic codes GDFT Hasse derivative codes over rings self-dual codes Type II codes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bannai, E., Dougherty, S. T., Harada, M., Oura, M. 1999Type II codes, even unimodular lattices, and invariant ringsIEEE Transaction Information Theory4511941205MathSciNetGoogle Scholar
  2. 2.
    K. Betsumiya, The Type II property for self-dual codes over finite fields of characteristic two, preprint.Google Scholar
  3. 3.
    Betsumiya, K., Ling, S., Nemenzo, F. R. 2004Type II codes over \({\bf F}_{2^{m}} + u{\bf F}_{2^{m}}\)Discrete Mathematics2754365CrossRefMathSciNetGoogle Scholar
  4. 4.
    Castagnoli, G., Massey, J. L., Schoeller, P. A., Seemann, N. 1991On repeated-root cyclic codesIEEE Transactions on Information Theory37337342CrossRefGoogle Scholar
  5. 5.
    Z. Chen, Scholar
  6. 6.
    Conan, J., Séguin, C. 1993Structural properties and enumeration of quasi-cyclic codesAAECC42539CrossRefGoogle Scholar
  7. 7.
    Dey, B. K. 2004On existence of good self-dual quasi-cyclic codesIEEE Transactions on Information Theory5017941798MathSciNetGoogle Scholar
  8. 8.
    Dougherty, S. T., Gaborit, P., Harada, M., Solé, P. 1999Type II codes over F2+u F2IEEE Transactions on Information Theory453245Google Scholar
  9. 9.
    Gulliver, T. A., Bhargava, V. K. 1991Some best rate 1/p and rate (p−1)/p systematic quasi-cyclic codesIEEE Transactions on Information Theory37552555CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gulliver, T. A., Bhargava, V. K. 1992Nine good (m−1)/pm quasi-cyclic codesIEEE Transactions on Information Theory3813661369MathSciNetGoogle Scholar
  11. 11.
    Gulliver, T. A., Bhargava, V. K. 1992Some best rate 1/p and rate (p−1)/p systematic quasi-cyclic codes over GF(3) and GF(4)IEEE Transactions on Information Theory3813691374MathSciNetGoogle Scholar
  12. 12.
    Gulliver, T. A., Bhargava, V. K. 1993Twelve good rate (mr)/pm binary quasi-cyclic codesIEEE Transactions on Information Theory3917501751CrossRefGoogle Scholar
  13. 13.
    Hasse, H. 1936Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger CharakteristikJ. Reine Angew. Math.1755054MATHGoogle Scholar
  14. 14.
    Lally, K., Fitzpatrick, P. 2001Algebraic structure of quasicyclic codesDisc. Appl. Math.111157175CrossRefMathSciNetGoogle Scholar
  15. 15.
    Lidl, R., Niederreiter, H. 1997Finite FieldsCambridge University PressCambridgeGoogle Scholar
  16. 16.
    Ling, S., Solé, P. 2001Type II codes over F4+u F4European J. Comb.22983997Google Scholar
  17. 17.
    Ling, S., Solé, P. 2001On the algebraic structure of quasi-cyclic codes I: finite fieldsIEEE Transactions on Information Theory4727512760Google Scholar
  18. 18.
    Ling, S., Solé, P. 2003On the algebraic structure of quasi-cyclic codes II: chain ringsDes., Codes and Crypto.30113130Google Scholar
  19. 19.
    Ling, S., Solé, P. 2005On the algebraic structure of quasi-cyclic codes III: generator theoryIEEE Transactions on Information Theory5126922700CrossRefGoogle Scholar
  20. 20.
    MacWilliams, F. J., Sloane, N. J. A. 1977The Theory of Error Correcting CodesNorth-HollandAmsterdamGoogle Scholar
  21. 21.
    J. L. Massey and S. Serconek, Linear complexity of periodic sequences: a general theory, Advances in Cryptology—Crypto ’96 (N. Koblitz ed.), LNCS 1109 (1996), pp. 358–371.Google Scholar
  22. 22.
    McDonald, B. R. 1974Finite Rings with IdentityMarcel DekkerNew YorkGoogle Scholar
  23. 23.
    Vardy, A. 1998Trellis structure of codesPless, V. S.Huffman, W. C. eds. Handbook of Coding TheoryElsevier ScienceAmsterdam19892117Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeRepublic of Singapore
  2. 2.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.CNRS, I3S, ESSISophia AntipolisFrance

Personalised recommendations