Designs, Codes and Cryptography

, Volume 38, Issue 2, pp 209–217 | Cite as

Generating More MNT Elliptic Curves

  • Michael Scott
  • Paulo S. L. M. Barreto


In their seminal paper, Miyaji et al. [13] describe a simple method for the creation of elliptic curves of prime order with embedding degree 3, 4, or 6. Such curves are important for the realisation of pairing-based cryptosystems on ordinary (non-supersingular) elliptic curves. We provide an alternative derivation of their results, and extend them to allow for the generation of many more suitable curves.


elliptic curves pairing-based cryptosystems 

AMS Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott, Efficient algorithms for pairing-based crytosystem. In Advances in Cryptology – Crypto ’2002, Vol. 2442 of Lecture Notes in Computer Science, Springer-Verlag, (2002) pp. 354–368.Google Scholar
  2. 2.
    P. S. L. M. Barreto, B. Lynn and M. Scott, Constructing elliptic curves with prescribed embedding degrees. In Security in Communication Networks - SCN. ’2002, Vol. 2576 of Lecture Note in Computer Science, Springer-Verlg, (2002), pp. 263–273.Google Scholar
  3. 3.
    Boneh, D., Franklin, M. 2003Identity-based encryption from the Weil pairingSIAM J. Comput.32586615CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Boneh, B. Lynn and H. Shacham, Short signatures from the Weil pairing. In Advances in Cryptology – Asiacrypt’ 2001, Vol. 2248 of Lecture Notes in Computer Science, Springer-Verlag, (2002), pp. 514–532.Google Scholar
  5. 5.
    F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Cryptology ePrint Archive, Report 2003/143, 2003, Available from
  6. 6.
    Coppersmith, D. 1984Fast evaluation of logarithms in fields of characteristics twoIEEE Trans. Inform. Theory30587594MATHMathSciNetGoogle Scholar
  7. 7.
    Crandall, R., Pomerance, C. 2001Prime Numbers: A Computational PerspectiveSpringer-VerlagBerlinGoogle Scholar
  8. 8.
    R. Dupont, A. Enge and F. Morain, Building curves with arbitrary small MOV degree over finite prime fields, Cryptology ePrint Archive, Report 2002/094, 2002.
  9. 9.
    S. Galbraith, K. Harrison and D. Soldera, Implementing the Tate pairing. Algorithm Number Theory Symposium – ANTS V, Vol. 2369 of Lecture Notes in Computer Science, Springer-Verlag, (2002) pp. 324–337.Google Scholar
  10. 10.
    IEEE Computer Society, New York, USA. IEEE Standard Specifications for Public-Key Cryptography – IEEE Std 1363:2000, 2000Google Scholar
  11. 11.
    R. Lidl and H. Niederreiter, Finite Fields. Number 20 in Encyclopedia of Mathematics and its Applications, 2nd ed., Cambridge University Press, Cambridge, UK, (1997).Google Scholar
  12. 12.
    A. Menezes, Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers (1993).Google Scholar
  13. 13.
    Miyaji, A., Nakabayashi, M., Takano, S. 2001New explicit conditions of elliptic curve traces for FR-reductionIEICE Trans. FundamentalsE84-A12341243Google Scholar
  14. 14.
    Odlyzko, A. M. 2000Discrete logarithms: the past and the futureDesign, Codes Cryptog.19129145MATHMathSciNetGoogle Scholar
  15. 15.
    Silverman, J. H. 1986The Arithmetic of Elliptic CurvesSpringer-VerlagBerlinNumber 106 in Graduate Texts in MathematicsGoogle Scholar
  16. 16.
    Smart, N. P. 2002An identity based authenticated key agreement protocol based on the Weil pairingElectronics Lett.38630632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Computer ApplicationsDublin City UniversityBallymunIreland
  2. 2.Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations