Designs, Codes and Cryptography

, Volume 38, Issue 1, pp 31–40 | Cite as

(6,3)-MDS Codes over an Alphabet of Size 4

  • T. L. Alderson


An (n,k) q -MDS code C over an alphabet \(\cal A\) (of size q) is a collection of q k n–tuples over \(\cal A\) such that no two words of C agree in as many as k coordinate positions. It follows that nq+k−1. By elementary combinatorial means we show that every (6,3)4-MDS code, linear or not, turns out to be a linear (6,3)4-MDS code or else a code equivalent to a linear code with these parameters. It follows that every (5,3)4-MDS code over\(\cal A\) must also be equivalent to linear.


MDS Code Bruen–Silverman Code dual arc 

1991 Mathematics Subject Classification

94B25 51E14 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Alderson, On MDS Codes and Bruen–Silverman Codes, PhD. Thesis, University of Western Ontario, (2002).Google Scholar
  2. 2.
    Alderson, T. L. 2005Extending MDS CodesAnn. Comb.9125135CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Baer, R. 1939Nets and groupsTrans AMS46110141MathSciNetMATHGoogle Scholar
  4. 4.
    Lynn M. Batten, Combinatorics of Finite Geometries, Cambridge University Press,(1986).Google Scholar
  5. 5.
    Beth, T., Jungnickel, D., Lenz, H. 1986Design TheoryCambridge University PressCambridgeGoogle Scholar
  6. 6.
    Bruck, R. H. 1951Finite nets I, numerical invariantsCanad. J. Math.394107MathSciNetMATHGoogle Scholar
  7. 7.
    Bruck, R. H. 1963Finite nets II, uniqueness and embeddingPacific. J. Math.13421457MathSciNetMATHGoogle Scholar
  8. 8.
    Bruen, A A., Silverman, R. 1988On extendable planes, MDS codes and hyperovals in PG(2,q), q=2 t , GeomDedicata.283143MathSciNetGoogle Scholar
  9. 9.
    Bruen, A. A., Thas, J. A., Blokhuis, A. 1988On MDS codes, codes, arcs in PG(n,q) with q even, and a solution of three fundamental problems of B. SegreInvent. Math.92441459CrossRefMathSciNetGoogle Scholar
  10. 10.
    MacWilliams, F. J., Sloane, N. J. A. 1977The Theory of Error-Correcting CodesNorth-HollandAmsterdamGoogle Scholar
  11. 11.
    Silverman, R. 1960A Metrization for power-sets with applications to combinatorial analysisCanad. J. Math.12158176MathSciNetMATHGoogle Scholar
  12. 12.
    D. Welsh, Codes and Cryptography, Oxford University Press, (2000).Google Scholar
  13. 13.
    Wicker, Stephen B.Bhargava, Vijay eds. 1994Reed-Solomon Codes and their ApplicationsIEEE PressNew YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Mathematical SciencesUniversity of New BrunswickSaint JohnCanada

Personalised recommendations