Designs, Codes and Cryptography

, Volume 37, Issue 3, pp 367–389 | Cite as

An Optimal Multisecret Threshold Scheme Construction



A multisecret threshold scheme is a system which protects a number of secret keys among a group of n participants. There is a secret s K associated with every subset K of k participants such that any t participants in K can reconstruct the secret s K , but a subset of w participants cannot get any information about a secret they are not associated with. This paper gives a construction for the parameters t = 2, k = 3 and for any n and w that is optimal in the sense that participants hold the minimal amount of information.


Secret sharing schemes multisecret schemes geometrical construction 

AMS classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beimel A., Gál A., Paterson M., Lower bounds for monotone span programs, Computational Complexity, Vol. 6 (1996/97) pp. 29–45.Google Scholar
  2. 2.
    Beutelspacher A., Rosenbaum U. (1998) Projective Geometry: From Foundations to Applications,Cambridge University Press.Google Scholar
  3. 3.
    R. Blom. An optimal class of symmetric key generation systems, Advances in Cryptology - Eurocrypt’84, Lecture Notes in Computer Science, Vol. 209 (1984) pp. 335–338.Google Scholar
  4. 4.
    Blundo C., A. De Santis, Herzberg A., Kutten S., U. Vaccaro and Yung M., Perfectly secure key distribution for dynamic conferences, Advances in Cryptology—Crypto’92, Lecture Notes in Computer Science, Vol. 740 (1993) pp. 471–486.Google Scholar
  5. 5.
    Jackson, W.-A., Martin, K.M. 1998Combinatorial models for perfect secret sharing schemesJournal of Combinational Mathematics and Combinatorial Computing28249265Google Scholar
  6. 6.
    W.-A. Jackson , K. M. Martin and C. M. O’Keefe, Multisecret threshold schemes, Advances in Cryptology—Crypto’93, Lecture Notes in Computer Science, Vol. 773 (1994) pp. 126–135.Google Scholar
  7. 7.
    Jackson, W.-A., Martin, K.M., O’Keefe, C.M. 1996A construction for multisecret threshold schemesDesigns of Codes and Cryptography9287303Google Scholar
  8. 8.
    Jackson, W.-A., Martin, K.M., O’Keefe, C.M. 2004Geometrical contributions to secret sharing theoryJournal of Geometry79102133CrossRefGoogle Scholar
  9. 9.
    J. W.P. Hirschfeld , Projective Geometries Over Finite Fields, Clarendon Press (1979).Google Scholar
  10. 10.
    R. Lidl and Niederreiter H., Finite Fields, Cambridge University Press (1983).Google Scholar
  11. 11.
    Matsumoto, T., Imai, H. 1987On the key predistribution system: A practical solution to the key predistribution problem.Advances in Cryptology—Crypto’87185193Google Scholar
  12. 12.
    G.J. Simmons , An introduction to shared secret and/or shared control schemes and their application. In Contemporary Cryptology: The Science of Information Integrity. IEEE Press (1992).Google Scholar
  13. 13.
    D.R. Stinson , Cryptography: Theory and Practice, CRC Press (1995).Google Scholar
  14. 14.
    Stinson, D.R. 1992An explication of secret sharing schemesDesigns, Codes and Cryptography2357390Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations