Skip to main content
Log in

Circ_0091579 Serves as a Tumor-Promoting Factor in Hepatocellular Carcinoma Through miR-1225-5p/PLCB1 Axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) is a dreadful threaten to human health worldwide. Many circular RNAs were reported to influence the malignant development of HCC. The aim of this study was to elucidate the role of circ_0091579 in HCC progression and the molecular fundamentation.

Methods

Expression of circ_0091579, microRNA-1225-5p (miR-1225-5p), and phospholipase C, β1 (PLCB1) was examined by quantitative reverse transcription-polymerase chain reaction or Western blotting. Cell viability, clonogenicity capacity, and apoptosis were determined via Cell Counting Kit-8 assay, colony formation assay, and flow cytometry, respectively. Transwell assay was employed to detect cell migration and invasion. Target relationship between miR-1225-5p and circ_0091579 or PLCB1 was demonstrated by dual-luciferase reporter assay. Moreover, role of circ_0091579 in vivo was assessed by Xenograft model assay.

Results

Expression of circ_0091579 and PLCB1 was increased, while miR-1225-5p expression was decreased in HCC tissues and cells. Circ_0091579 or PLCB1 depletion had inhibitory effects on HCC cell proliferation and metastasis. Circ_0091579 sponged miR-1225-5p to upregulate PLCB1 expression in HCC cells. Silencing of miR-1225-5p contributed to HCC progression, which was mitigated by PLCB1 depletion. Circ_0091579 deficiency could suppress HCC tumor growth in vivo.

Conclusion

Circ_0091579 knockdown repressed HCC progression and tumorigenesis by regulating miR-1225-5p/PLCB1 axis, affording a novel molecular basis for HCC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 2019;156:e471. https://doi.org/10.1053/j.gastro.2018.08.065.

    Article  Google Scholar 

  3. Lurje I, Czigany Z, Bednarsch J et al. Treatment strategies for hepatocellular carcinoma—a multidisciplinary approach. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20061465.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rong D, Tang W, Li Z et al. Novel insights into circular RNAs in clinical application of carcinomas. Onco Targets Ther. 2017;10:2183–2188. https://doi.org/10.2147/ott.s134403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiu L, Xu H, Ji M et al. Circular RNAs in hepatocellular carcinoma: biomarkers, functions and mechanisms. Life Sci. 2019;231:116660. https://doi.org/10.1016/j.lfs.2019.116660.

    Article  CAS  PubMed  Google Scholar 

  6. Yao R, Zou H, Liao W. Prospect of circular RNA in hepatocellular carcinoma: a novel potential biomarker and therapeutic target. Front Oncol. 2018;8:332. https://doi.org/10.3389/fonc.2018.00332.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang C, Zhang C, Lin J et al. Circular RNA Hsa_Circ_0091579 serves as a diagnostic and prognostic marker for hepatocellular carcinoma. Cell PhysiolBiochem. 2018;51:290–300. https://doi.org/10.1159/000495230.

    Article  CAS  Google Scholar 

  8. Panda AC. Circular RNAs Act as miRNA sponges. AdvExp Med Biol. 2018;1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6.

    Article  CAS  Google Scholar 

  9. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. https://doi.org/10.1038/nature02871.

    Article  CAS  PubMed  Google Scholar 

  10. Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma (review). Oncol Rep. 2015;34:2811–2820. https://doi.org/10.3892/or.2015.4275.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Zhang W, Hu Y et al. Downregulation of miR-1225-5p is pivotal for proliferation, invasion, and migration of HCC cells through NFκB regulation. J Clin Lab Anal. 2020. https://doi.org/10.1002/jcla.23474.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim D, Chang HR, Baek D. Rules for functional microRNA targeting. BMB Rep. 2017;50:554–559. https://doi.org/10.5483/bmbrep.2017.50.11.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lo Vasco VR, Cardinale G, Polonia P. Deletion of PLCB1 gene in schizophrenia-affected patients. J Cell Mol Med. 2012;16:844–851. https://doi.org/10.1111/j.1582-4934.2011.01363.x.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Zhao X, Wang D et al. Up-regulated expression of phospholipase C, β1 is associated with tumor cell proliferation and poor prognosis in hepatocellular carcinoma. Onco Targets Ther. 2016;9:1697–1706. https://doi.org/10.2147/ott.s97189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 2001;25:402–408. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  16. Fu L, Jiang Z, Li T et al. Circular RNAs in hepatocellular carcinoma: functions and implications. Cancer Med. 2018;7:3101–3109. https://doi.org/10.1002/cam4.1574.

    Article  CAS  PubMed Central  Google Scholar 

  17. Niu WY, Chen L, Zhang P et al. Circ_0091579 promotes proliferative ability and metastasis of liver cancer cells by regulating microRNA-490-3p. Eur Rev Med Pharmacol Sci. 2019;23:10264–10273. https://doi.org/10.26355/eurrev_201912_19664.

    Article  PubMed  Google Scholar 

  18. Liu W, Yin C, Liu Y. Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis. Cancer BiotherRadiopharm. 2020. https://doi.org/10.1089/cbr.2019.3472.

    Article  Google Scholar 

  19. Jiang P, Han W, Fu Y et al. The Hsa_circ_0091579/miR-940/TACR1 Axis regulates the development of hepatocellular carcinoma. Cancer Manag Res. 2020;12:9087–9096. https://doi.org/10.2147/cmar.s259243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li D, Chi G, Chen Z et al. MicroRNA-1225-5p behaves as a tumor suppressor in human glioblastoma via targeting of IRS1. Onco Targets Ther. 2018;11:6339–6350. https://doi.org/10.2147/ott.s178001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng H, Zhang F, Lin X et al. MicroRNA-1225-5p inhibits proliferation and metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation of β-catenin signaling. Oncotarget. 2016;7:4647–4663. https://doi.org/10.18632/oncotarget.6615.

    Article  PubMed  Google Scholar 

  22. Sun P, Zhang D, Huang H et al. MicroRNA-1225-5p acts as a tumor-suppressor in laryngeal cancer via targeting CDC14B. Biol Chem. 2019;400:237–246. https://doi.org/10.1515/hsz-2018-0265.

    Article  CAS  PubMed  Google Scholar 

  23. Wang S, Chen X, Zhang Z et al. MicroRNA-1225-5p inhibits the development and progression of thyroid cancer via targeting sirtuin 3. Pharmazie. 2019;74:423–427. https://doi.org/10.1691/ph.2019.9411.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Wei L, Sheng W et al. miR-1225-5p functions as a tumor suppressor in osteosarcoma by targeting Sox9. DNA Cell Biol. 2020;39:78–91. https://doi.org/10.1089/dna.2019.5105.

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Zhang F, Li H. miR-1225-5p inhibits non-small cell lung cancer cell proliferation, migration and invasion, and may be a prognostic biomarker. ExpTher Med. 2020;20:172. https://doi.org/10.3892/etm.2020.9302.

    Article  CAS  Google Scholar 

  26. Sengelaub CA, Navrazhina K, Ross JB et al. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. Emboj. 2016;35:62–76. https://doi.org/10.15252/embj.201591973.

    Article  CAS  Google Scholar 

  27. Zhang T, Song X, Liao X et al. Distinct prognostic values of phospholipase C beta family members for non-small cell lung carcinoma. Biomed Res Int. 2019;2019:4256524. https://doi.org/10.1155/2019/4256524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan Y, Wang L, Han XC et al. LncRNA MIF-AS1 aggravates the progression of ovarian cancer by sponging miRNA-31-5p. Eur Rev Med Pharmacol Sci. 2020;24:2248–2255. https://doi.org/10.26355/eurrev_202003_20490.

    Article  CAS  PubMed  Google Scholar 

  29. Lu ML, Zhang Y, Li J et al. MicroRNA-124 inhibits colorectal cancer cell proliferation and suppresses tumor growth by interacting with PLCB1 and regulating Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23:121–136. https://doi.org/10.26355/eurrev_201901_16756.

    Article  PubMed  Google Scholar 

  30. Lin D, Fu Z, Yang G et al. Exportin-5 SUMOylationpromoteshepatocellularcarcinoma progression. ExpCellRes 2020;395:112219. https://doi.org/10.1016/j.yexcr.2020.112219.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Not applicable.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

YZ and XZ contributed to conceptualization and methodology; HZ, XS, and YL performed formal analysis and data curation; DZ, YZ, and HZ were involved in validation and investigation; DZ, YZ, XZ, and HZ performed writing—original draft preparation, and writing—review and editing; all authors approved the final manuscript.

Corresponding author

Correspondence to Yiming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The present study was approved by the ethical review committee of The Second Affiliated Hospital of Xi'an Jiaotong University. Written informed consent was obtained from all enrolled patients.

Consent for publication

Patients agree to participate in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, Y., Zhang, X. et al. Circ_0091579 Serves as a Tumor-Promoting Factor in Hepatocellular Carcinoma Through miR-1225-5p/PLCB1 Axis. Dig Dis Sci 67, 585–597 (2022). https://doi.org/10.1007/s10620-021-06861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06861-2

Keywords

Navigation