Skip to main content

Advertisement

Log in

Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Risk stratification of patients with gastrointestinal bleeding (GIB) is recommended, but current risk assessment tools have variable performance. Machine learning (ML) has promise to improve risk assessment. We performed a systematic review to evaluate studies utilizing ML techniques for GIB. Bibliographic databases and conference abstracts were searched for studies with a population of overt GIB that used an ML algorithm with outcomes of mortality, rebleeding, hemostatic intervention, and/or hospital stay. Two independent reviewers screened titles and abstracts, reviewed full-text studies, and extracted data from included studies. Risk of bias was assessed with an adapted Quality in Prognosis Studies tool. Area under receiver operating characteristic curves (AUCs) were the primary assessment of performance with AUC ≥ 0.80 predefined as an acceptable threshold of good performance. Fourteen studies with 30 assessments of ML models met inclusion criteria. No study had low risk of bias. Median AUC reported in validation datasets for predefined outcomes of mortality, intervention, or rebleeding was 0.84 (range 0.40–0.98). AUCs were higher with artificial neural networks (median 0.93, range 0.78–0.98) than other ML models (0.81, range 0.40–0.92). ML performed better than clinical risk scores (Glasgow-Blatchford, Rockall, Child–Pugh, MELD) for mortality in upper GIB. Limitations include heterogeneity of ML models, inconsistent comparisons of ML models with clinical risk scores, and high risk of bias. ML generally provided good–excellent prognostic performance in patients with GIB, and artificial neural networks tended to outperform other ML models. ML was better than clinical risk scores for mortality in upper GIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peery AF, Crockett SD, Barritt AS, et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology. 2015;149:e1733.

    Google Scholar 

  2. Barkun AN, Bardou M, Kuipers EJ, et al. International consensus upper gastrointestinal bleeding conference G: International consensus recommendations on the management of patients with nonvariceal upper gastrointestinal bleeding. Ann Intern Med. 2010;152:101–113.

    Article  PubMed  Google Scholar 

  3. Laine L, Jensen DM. Management of patients with ulcer bleeding. Am J Gastroenterol. 2012;107:345–360.

    Article  CAS  PubMed  Google Scholar 

  4. Gralnek IM, Dumonceau JM, Kuipers EJ, et al. Diagnosis and management of nonvariceal upper gastrointestinal hemorrhage: European society of gastrointestinal endoscopy (esge) guideline. Endoscopy. 2015;47:a1–46.

    Article  PubMed  Google Scholar 

  5. Strate LL, Gralnek IM. Acg clinical guideline: Management of patients with acute lower gastrointestinal bleeding. Am J Gastroenterol. 2016;111:755.

    Article  PubMed  Google Scholar 

  6. Rockall TA, Logan RF, Devlin HB, Northfield TC. Risk assessment after acute upper gastrointestinal haemorrhage. Gut. 1996;38:316–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blatchford O, Murray WR, Blatchford M. A risk score to predict need for treatment for upper-gastrointestinal haemorrhage. Lancet. 2000;356:1318–1321.

    Article  CAS  PubMed  Google Scholar 

  8. Saltzman JR, Tabak YP, Hyett BH, Sun X, Travis AC, Johannes RS. A simple risk score accurately predicts in-hospital mortality, length of stay, and cost in acute upper gi bleeding. Gastrointest Endosc. 2011;74:1215–1224.

    Article  PubMed  Google Scholar 

  9. Strate LL, Saltzman JR, Ookubo R, Mutinga ML, Syngal S. Validation of a clinical prediction rule for severe acute lower intestinal bleeding. Am J Gastroenterol. 2005;100:1821–1827.

    Article  PubMed  Google Scholar 

  10. Velayos FS, Williamson A, Sousa KH, et al. Early predictors of severe lower gastrointestinal bleeding and adverse outcomes: A prospective study. Clin Gastroenterol Hepatol. 2004;2:485–490.

    Article  PubMed  Google Scholar 

  11. Newman J, Fitzgerald JE, Gupta S, von Roon AC, Sigurdsson HH, Allen-Mersh TG. Outcome predictors in acute surgical admissions for lower gastrointestinal bleeding. Colorectal Dis. 2012;14:1020–1026.

    Article  CAS  PubMed  Google Scholar 

  12. Aoki T, Nagata N, Shimbo T, et al. Development and validation of a risk scoring system for severe acute lower gastrointestinal bleeding. Clin Gastroenterol Hepatol. 2016;14:e1562.

    Article  Google Scholar 

  13. Stanley AJ, Ashley D, Dalton HR, et al. Outpatient management of patients with low-risk upper-gastrointestinal haemorrhage: Multicentre validation and prospective evaluation. Lancet. 2009;373:42–47.

    Article  CAS  PubMed  Google Scholar 

  14. Abu-Mostafa YS, Magdon-Ismail M, Lin H. Learning from data: A short course. United States of America; 2012.

  15. Mitchell TM. Machine Learning. New York: McGraw-Hill; 1997.

    Google Scholar 

  16. Wilson FP, Shashaty M, Testani J, et al. Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. Lancet. 2015;385:1966–1974.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andrew W, Albert TY, April SL, Ralph G, Vanja CD, Dexter H. Development and validation of an electronic health record—based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairment. JAMA Netw Open. 2018;1(4):e181018.

    Article  Google Scholar 

  18. Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir Res. 2017;4:e000234.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–286.

    Article  PubMed  Google Scholar 

  21. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The charms checklist. PLoS Med. 2014;11:e1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zarshenas S, Tam L, Colantonio A, Alavinia SM, Cullen N. Predictors of discharge destination from acute care in patients with traumatic brain injury. BMJ Open. 2017;7:e016694.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5:1315–1316.

    Article  PubMed  Google Scholar 

  24. Ali A, Swingland J, Choi CH, et al. OC-143 artificial neural network for the risk stratification of acute upper gastrointestinal bleeding: Multicentre comparative analysis vs the Glasgow Blatchford and Rockall scores. Gut. 2012;61:A62–A62.

    Article  Google Scholar 

  25. Augustin S, Muntaner L, Altamirano JT, et al. Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis. Clin Gastroenterol Hepatol. 2009;7:1347–1354.

    Article  PubMed  Google Scholar 

  26. Ayaru L, Ypsilantis PP, Nanapragasam A, et al. Prediction of outcome in acute lower gastrointestinal bleeding using gradient boosting. PLoS One. 2015;10:e0132485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi CH, Swingland J, Ali A, Bose S, Ayaru L. Assessing risk of adverse outcome in acute lower gastrointestinal bleeding: Artificial neural network vs sign guidelines and bleed score. Gut. 2012;61:A156–A157.

    Article  Google Scholar 

  28. Chu A, Ahn H, Halwan B, et al. A decision support system to facilitate management of patients with acute gastrointestinal bleeding. Artif Intell Med. 2008;42:247–259.

    Article  PubMed  Google Scholar 

  29. Das A, Ben-Menachem T, Cooper GS, et al. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model. Lancet (London, England). 2003;362:1261–1266.

    Article  Google Scholar 

  30. Das A, Ben-Menachem T, Farooq FT, et al. Artificial neural network as a predictive instrument in patients with acute nonvariceal upper gastrointestinal hemorrhage. Gastroenterology. 2008;134:65–74.

    Article  PubMed  Google Scholar 

  31. Grossi E, Marmo R, Intraligi M, Buscema M. Artificial neural networks for early prediction of mortality in patients with non variceal upper gi bleeding (ugib). Biomed Inf Insights. 2008;1:7–19.

    Google Scholar 

  32. Loftus TJ, Brakenridge SC, Croft CA, et al. Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention. J Surg Res. 2017;212:42–47.

    Article  PubMed  Google Scholar 

  33. Lyles T, Elliott A, Rockey DC. A risk scoring system to predict in-hospital mortality in patients with cirrhosis presenting with upper gastrointestinal bleeding. J Clin Gastroenterol. 2014;48:712–720.

    Article  PubMed  Google Scholar 

  34. Rotondano G, Cipolletta L, Grossi E, et al. Italian registry on upper gastrointestinal B: Artificial neural networks accurately predict mortality in patients with nonvariceal upper gi bleeding. Gastrointest Endosc. 2011;73:226.e211.

    Article  Google Scholar 

  35. Thon K, Stoltzing H, Ohmann C, Lorenz W, Roher HD. Decision-making and clinical problem solving in upper gastrointestinal bleeding. Theor Surg. 1988;2:185–198.

    Google Scholar 

  36. Lee HH, Park JM, Han S, et al. A simplified prognostic model to predict mortality in patients with acute variceal bleeding. Dig Liver Dis. 2018;50:247–253.

    Article  PubMed  Google Scholar 

  37. D’Amico G, De Franchis R. Upper digestive bleeding in cirrhosis. Post-therapeutic outcome and prognostic indicators. Hepatology. 2003;38:599–612.

    Article  PubMed  Google Scholar 

  38. Stanley AJ, Laine L, Dalton HR, et al. International gastrointestinal bleeding C: Comparison of risk scoring systems for patients presenting with upper gastrointestinal bleeding: International multicentre prospective study. BMJ. 2017;356:i6432.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laursen SB, Hansen JM. Schaffalitzky de Muckadell OB: The glasgow blatchford score is the most accurate assessment of patients with upper gastrointestinal hemorrhage. Clin Gastroenterol Hepatol. 2012;10:e1131.

    Article  Google Scholar 

  40. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. npj Dig Med. 2018;1:18.

    Article  Google Scholar 

  41. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J Am Med Inform Assoc. 2017;24:198–208.

    Article  PubMed  Google Scholar 

  43. Waljee AK, Joyce JC, Wang S, et al. Algorithms outperform metabolite tests in predicting response of patients with inflammatory bowel disease to thiopurines. Clin Gastroenterol Hepatol. 2010;8:143–150.

    Article  PubMed  Google Scholar 

  44. Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics: Recalibrating expectations. JAMA. 2018;320:27–28.

    Article  PubMed  Google Scholar 

Download references

Funding

Grant support for this study was obtained from the National Institutes of Health T32 DK007017 (D.S.)

Author information

Authors and Affiliations

Authors

Contributions

Dennis Shung M.D. took part in study concept and design, data acquisition, data analysis and interpretation, and drafting of manuscript. Michael Simonov M.D. performed data acquisition, data analysis and interpretation, and critical revision of manuscript. Mark Gentry, M.A., M.L.S., conducted study design, data acquisition, and critical revision of manuscript. Benjamin Au, M.S., carried out data analysis and interpretation, technical support with machine learning expertise, and critical revision of manuscript. Loren Laine M.D. is involved in study concept and design, data analysis and interpretation, and drafting of manuscript.

Corresponding author

Correspondence to Dennis Shung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shung, D., Simonov, M., Gentry, M. et al. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Dig Dis Sci 64, 2078–2087 (2019). https://doi.org/10.1007/s10620-019-05645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05645-z

Keywords

Navigation