Skip to main content

Advertisement

Log in

H3K9me3, H3K36me3, and H4K20me3 Expression Correlates with Patient Outcome in Esophageal Squamous Cell Carcinoma as Epigenetic Markers

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Histone methylation, as an essential pattern of posttranslational modifications, contributes to multiple cancer-related biological processes. Dysregulation of histone methylation is now considered a biomarker for cancer prognosis.

Aims

This study investigated and evaluated the potential role of four histone lysine trimethylation markers as biomarkers for esophageal squamous cell carcinoma (ESCC) prognosis.

Methods

Tissue arrays were made from 135 paraffin-embedded ESCC samples and examined for histone markers by immunohistochemistry, and 10 pairs of cancer and noncancerous mucosa tissues from ESCC patients were investigated with Western blot. Chi-squared test, Kaplan–Meier analysis with log-rank test, and Cox proportional hazard trend analyses were performed to assess the prognostic values of the markers.

Results

Histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 9 trimethylation (H3K9me3), and histone 4 lysine 20 trimethylation (H4K20me3), but not histone 3 lysine 36 trimethylation (H3K36me3), showed stronger immunostaining signals in tumor tissues than in the corresponding adjacent non-neoplastic mucosa tissues. The expression patterns of H3K36me3, H3K9me3, and H4K20me3 correlated with tumor infiltrating depth, lymph node involvement, and pTNM stage. Low-scoring H3K9me3 and H4K20me3 predicted better prognosis, while H3K36me3 manifested the opposite trend. Poor prognosis occurred in ESCC patients with expression patterns of high levels of H3K9me3, high levels of H4K20me3, and low levels of H3K36me3 expression.

Conclusions

H3K9me3, H4K20me3, and H3K36me3 showed a close relationship with clinical features and were considered independent risk factors for survival of ESCC patients. The combination of H3K9me3, H4K20me3, and H3K36me3 expression, rather than the expression of a single histone marker, is believed to further enhance evaluations of ESCC prognosis and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernard WS, Christopher PW. World cancer report. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  2. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–2252.

    Article  CAS  PubMed  Google Scholar 

  3. Wong SH, Goode DL, Iwasaki M, et al. The H3K4-methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell. 2015;28:198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katoh H, Qin ZS, Liu R, et al. FOXP3 orchestrates H4K16 acetylation and H3K4 tri-methylation for activation of multiple genes through recruiting MOF and causing displacement of PLU-1. Mol Cell. 2011;44:770–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–3350.

    Article  CAS  PubMed  Google Scholar 

  6. Deb M, Kar S, Sengupta D, et al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci. 2014;71:3439–3463.

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA. 2002;99:8695–8700.

    Article  CAS  PubMed  Google Scholar 

  8. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419:407–411.

    Article  CAS  PubMed  Google Scholar 

  9. Chen K, Chen Z, Wu D, et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat Genet. 2015;47:1149–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He C, Xu J, Zhang J, et al. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol. 2012;43:1425–1435.

    Article  CAS  PubMed  Google Scholar 

  11. Ellinger J, Kahl P, Mertens C, et al. Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer. 2010;127:2360–2366.

    Article  CAS  PubMed  Google Scholar 

  12. Li GM. Decoding the histone code: role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy. Can Res. 2013;73:6379–6383.

    Article  CAS  Google Scholar 

  13. Wen H, Li Y, Xi Y, et al. ZMYND11 links histone H3.3 K36 trimethylation to transcription elongation and tumor suppression. Nature. 2014;508:263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schotta G, Lachner M, Sarma K, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18:1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007;25:1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genom. 2009;10:143.

    Article  CAS  Google Scholar 

  17. Pauler FM, Sloane MA, Huang R, et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 2009;19:221–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slee RB, Steiner CM, Herbert BS, et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene. 2012;31:3244–3253.

    Article  CAS  PubMed  Google Scholar 

  19. Peters AH, O’Carroll D, Scherthan H, et al. Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107:323–337.

    Article  CAS  Google Scholar 

  20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    Article  CAS  PubMed  Google Scholar 

  21. Benard A, Goossens-Beumer IJ, van Hoesel AQ, et al. Histone trimethylation at H3K4, H3K9 and H4K20 correlates with patient survival and tumor recurrence in early-stage colon cancer. BMC Cancer. 2014;14:531.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jorgensen S, Schotta G, Sorensen CS. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res. 2013;41:2797–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ho TH, Kapur P, Joseph RW, et al. Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Mod Pathol. 2016;29:34–42.

    Article  CAS  PubMed  Google Scholar 

  24. Munshi A, Shafi G, Aliya N, Jyothy A. Histone modifications dictate specific biological readouts. J Genet Genomics. 2009;36:75–88.

    Article  CAS  PubMed  Google Scholar 

  25. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.

    Article  CAS  PubMed  Google Scholar 

  26. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39 h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13:1192–1200.

    Article  CAS  PubMed  Google Scholar 

  27. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paschall AV, Yang D, Lu C, et al. H3K9 trimethylation silences Fas expression to confer colon carcinoma immune escape and 5-fluorouracil chemoresistance. J Immunol (Baltimore, Md.: 1950). 2015;195:1868–1882.

    Article  CAS  Google Scholar 

  29. Kylie K, Romero J, Lindamulage IK, Knockleby J, Lee H. Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus. Cell Cycle (Georgetown, Tex.). 2016;15:2321–2335.

    Article  CAS  Google Scholar 

  30. Wang DY, An SH, Liu L, et al. Hepatitis B virus X protein influences enrichment profiles of H3K9me3 on promoter regions in human hepatoma cell lines. Oncotarget. 2016;7:84883–84892.

    PubMed  PubMed Central  Google Scholar 

  31. Belyaeva A, Venkatachalapathy S, Nagarajan M, Shivashankar GV, Uhler C. Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription. Proc Natl Acad Sci USA. 2017;114:13714–13719.

    Article  CAS  PubMed  Google Scholar 

  32. Brustel J, Kirstein N, Izard F, et al. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. EMBO J. 2017;36:2726–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nelson DM, Jaber-Hijazi F, Cole JJ, et al. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 2016;17:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, et al. SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets cyclin D2 through H4K20me3. Oncotarget. 2015;6:13644–13657.

    PubMed  PubMed Central  Google Scholar 

  35. Van Den Broeck A, Brambilla E, Moro-Sibilot D, et al. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res. 2008;14:7237–7245.

    Article  CAS  Google Scholar 

  36. Kar S, Patra SK. Overexpression of OCT4 induced by modulation of histone marks plays crucial role in breast cancer progression. Gene. 2018;643:35–45.

    Article  CAS  PubMed  Google Scholar 

  37. Santos-Barriopedro I, Bosch-Presegue L, Marazuela-Duque A, et al. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nat Commun. 2018;9:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keung EZ, Akdemir KC, Al Sannaa GA, et al. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. J Clin Investig. 2015;125:2965–2978.

    Article  PubMed  Google Scholar 

  39. Yokoyama Y, Matsumoto A, Hieda M, et al. Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Res. 2014;16:R66.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

  41. Benayoun BA, Pollina EA, Ucar D, et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell. 2014;158:673–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao F, Fang Y, Tan HK, et al. Super-enhancers and broad H3K4me3 domains form complex gene regulatory circuits involving chromatin interactions. Sci Rep. 2017;7:2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu C, Paschall AV, Shi H, et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J Nat Cancer Inst. 2017. https://doi.org/10.1093/jnci/djw283.

    Article  PubMed  Google Scholar 

  44. Funata S, Matsusaka K, Yamanaka R, et al. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget. 2017;8:55265–55279.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gu P, Chen X, Xie R, et al. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol Ther. 2017;25:1959–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Z, Shi L, Dawany N, Kelsen J, Petri MA, Sullivan KE. H3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosus. Clin Epigenet. 2016;8:14.

    Article  CAS  Google Scholar 

  47. Keogh MC, Kurdistani SK, Morris SA, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell. 2005;123:593–605.

    Article  CAS  PubMed  Google Scholar 

  48. Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123:581–592.

    Article  CAS  PubMed  Google Scholar 

  49. Aymard F, Bugler B, Schmidt CK, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 2014;21:366–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chantalat S, Depaux A, Hery P, et al. Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res. 2011;21:1426–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li J, Moazed D, Gygi SP. Association of the histone methyltransferase set2 with RNA polymerase II plays a role in transcription elongation. J Biol Chem. 2002;277:49383–49388.

    Article  CAS  PubMed  Google Scholar 

  52. Li L, Wang Y. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. J Biol Chem. 2017;292:11951–11959.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang Y, Gu L, Li GM. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem. 2018;293:7811–7823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pfister SX, Markkanen E, Jiang Y, et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell. 2015;28:557–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li F, Mao G, Tong D, et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell. 2013;153:590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogawski DS, Grembecka J, Cierpicki T. H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Med Chem. 2016;8:1589–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81672414 and 81472548) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0058). This work was also supported by the Innovation Capability Development Project of Jiangsu Province (BM2015004) and the Key Project of Cutting-edge Clinical Technology of Jiangsu Province (BE2017759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fan.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10620_2019_5529_MOESM1_ESM.jpg

Figure S1. Scales of staining intensity for the stained histone markers by the IHC assay. I0 = negative (no staining); I1 = weak staining; I2 = moderate staining; and I3 = intensive staining. (JPEG 4665 kb)

10620_2019_5529_MOESM2_ESM.jpg

Figure S2. Scales of staining area for the stained histone markers by the IHC technique. Based on the percentage of labeled cells in the observed epithelial tissues, 5 different levels were defined as follows: A0 = 0~5% positive cells; A1 = 6~25% positive cells; A2 = 26~50% positive cells; A3 = 51~75% positive cells; and A4 = 76~100% positive cells. (JPEG 6481 kb)

Supplementary material 3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Li, Y., Lin, S. et al. H3K9me3, H3K36me3, and H4K20me3 Expression Correlates with Patient Outcome in Esophageal Squamous Cell Carcinoma as Epigenetic Markers. Dig Dis Sci 64, 2147–2157 (2019). https://doi.org/10.1007/s10620-019-05529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05529-2

Keywords

Navigation