Skip to main content

Advertisement

Log in

Why Do Individuals with Cirrhosis Fall? A Mechanistic Model for Fall Assessment, Treatment, and Research

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Falls are prevalent for people with cirrhosis and commonly lead to loss of independence, reduced quality of life, and mortality. Despite a critical need for fall prevention in this population, cirrhosis-specific fall-related mechanisms are not well understood. We posit that most falls in this patient population are due to a coalescence of discrete subclinical impairments that are not typically detected at the point of care. The combined effect of these subtle age- and disease-related neurocognitive and muscular impairments leads to the inability to respond successfully to a postural perturbation within the available 300 to 400 ms. This article provides a conceptual model of physiological resilience to avoid a fall that focuses on attributes that underlie the ability to withstand a postural perturbation and their clinical evaluation. Evidence supporting this model in cirrhosis and other high fall risk conditions will be synthesized and suggestions for fall assessment and treatment will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Younossi ZM. The impact of hepatitis C burden: an evidence-based approach. Aliment Pharmacol Ther. 2014;39:518–531.

    Article  CAS  PubMed  Google Scholar 

  2. Rakoski MO, McCammon RJ, Piette JD, et al. Burden of cirrhosis on older Americans and their families: analysis of the health and retirement study. Hepatology. 2012;55:184–191.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Román E, Córdoba J, Torrens M, Guarner C, Soriano G. Falls and cognitive dysfunction impair health-related quality of life in patients with cirrhosis. Eur J Gastroenterol Hepatol. 2013;25:77–84.

    Article  PubMed  Google Scholar 

  4. Solà E, Watson H, Graupera I, et al. Factors related to quality of life in patients with cirrhosis and ascites: relevance of serum sodium concentration and leg edema. J Hepatol. 2012;57:1199–1206.

    Article  CAS  PubMed  Google Scholar 

  5. Frith J, Kerr S, Robinson L, et al. Falls and fall-related injury are common in older people with chronic liver disease. Dig Dis Sci. 2012;57:2697–2702. https://doi.org/10.1007/s10620-012-2193-5.

    Article  PubMed  Google Scholar 

  6. Roman E, Cordoba J, Torrens M, et al. Minimal hepatic encephalopathy is associated with falls. Am J Gastroenterol. 2011;106:476–482.

    Article  PubMed  Google Scholar 

  7. Soriano G, Román E, Córdoba J, et al. Cognitive dysfunction in cirrhosis is associated with falls: a prospective study. Hepatology. 2012;55:1922–1930.

    Article  PubMed  Google Scholar 

  8. Tapper EB, Risech-Neyman Y, Sengupta N. Psychoactive medications increase the risk of falls and fall-related injuries in hospitalized patients with cirrhosis. Clin Gastroenterol Hepatol. 2015;13:1670–1675.

    Article  PubMed  Google Scholar 

  9. Alcalde Vargas A, Pascasio Acevedo JM, Gutiérrez Domingo I, et al. Prevalence and characteristics of bone disease in cirrhotic patients under evaluation for liver transplantation. Transplant Proc. 2012;44:1496–1498.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SM, Te HS, Levitsky J. Operative risk of total hip and knee arthroplasty in cirrhotic patients. J Arthroplast. 2005;20:460–466.

    Article  Google Scholar 

  11. Teh SH, Nagorney DM, Stevens SR, et al. Risk factors for mortality after surgery in patients with cirrhosis. Gastroenterology. 2007;132:1261–1269.

    Article  PubMed  Google Scholar 

  12. Ezaz G, Murphy SL, Mellinger J, et al. Increased morbidity and mortality associated with falls among patients with cirrhosis. Am J Med. 2018;131:645–650.

    Article  PubMed  Google Scholar 

  13. Kenny R, Rubenstein L, Tinetti M, et al. Panel on prevention of falls in older persons, American geriatrics society and British geriatrics society: summary of the updated American geriatrics society/British geriatrics society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc. 2011;59:148–157.

    Article  Google Scholar 

  14. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35:ii37–ii41.

    Article  PubMed  Google Scholar 

  15. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: a review of the literature. Maturitas. 2013;75:51–61.

    Article  PubMed  Google Scholar 

  16. Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:CD007146.

    Google Scholar 

  17. Tandon P, Ismond KP, Riess K. Exercise in cirrhosis: translating evidence and experience to practice. J Hepatol. 2018;. https://doi.org/10.1016/j.jhep.2018.06.017.

    Article  PubMed  Google Scholar 

  18. Román E, García-Galcerán C, Torrades T, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PloS One. 2016;11:e0151652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc. 1994;42:1110–1117.

    Article  CAS  PubMed  Google Scholar 

  20. Tajali S, Rouhani M, Mehravar M, et al. Effects of external perturbations on anticipatory and compensatory postural adjustments in patients with multiple sclerosis and a fall history. Int J MS Care. 2018;20:164–172.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gomez-Anson B, Román E, de Fernández Bobadilla R, et al. Alterations in cerebral white matter and neuropsychology in patients with cirrhosis and falls. PLoS One. 2015;10:e0118930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lord SR, Delbaere K, Gandevia SC. Use of a physiological profile to document motor impairment in ageing and in clinical groups. J Physiol. 2016;594:4513–4523.

    Article  CAS  PubMed  Google Scholar 

  23. Berg W, Alessio H, Mills E, Tong C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 1997;26:261–268.

    Article  CAS  PubMed  Google Scholar 

  24. Faulkner KA, Cauley JA, Zmuda JM, et al. Ethnic differences in the frequency and circumstances of falling in older community-dwelling women. J Am Geriatr Soc. 2005;53:1774–1779.

    Article  PubMed  Google Scholar 

  25. Timsina LR, Willetts JL, Brennan MJ, et al. Circumstances of fall-related injuries by age and gender among community-dwelling adults in the United States. PLoS One. 2017;12:e0176561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo J, Ashton-Miller JA. Effect of pre-impact movement strategies on the impact forces resulting from a lateral fall. J Biomech. 2008;41:1969–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Linden M, Marigold DS, Gabreels FJ, Duysens J. Muscle reflexes and synergies triggered by an unexpected support surface height during walking. J Neurophysiol. 2007;97:3639–3650.

    Article  PubMed  Google Scholar 

  28. Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of human balance control: a systematic review. Front Hum Neurosci. 2017;11:170.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gerards MHG, McCrum C. Perturbation-based balance training for falls reduction among older adults: current evidence and implications for clinical practice. Geriatr Gerontol Int. 2017;17:2294–2303.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mansfield A, Schinkel-Ivy A, Danells CJ, et al. Does perturbation training prevent falls after discharge from stroke rehabilitation? a prospective cohort study with historical control. J Stroke Cerebrovasc Dis. 2017;26:2174–2180.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pai YC, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults’ annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69:1586–1594.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pasluosta CF, Steib S, Klamroth S, et al. Acute neuromuscular adaptations in the postural control of patients with Parkinson’s disease after perturbed walking. Front Aging Neurosci. 2017;9:316.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Epro G, Mierau A, McCrum C, et al. Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J Neurophys. 2018;119:2229–2240.

    Article  CAS  Google Scholar 

  34. Richardson JK, Allet L, Kim H, Ashton-Miller JA. Fibular motor nerve conduction studies and ankle sensorimotor capacities. Muscle Nerve. 2013;47:497–503.

    Article  PubMed  Google Scholar 

  35. Allampati S, Duarte-Rojo A, Thacker LR, et al. Diagnosis of minimal hepatic encephalopathy using Stroop EncephalApp: a multicenter US-based, norm-based study. Am J Gastroenterol. 2016;111:78–86.

    Article  PubMed  Google Scholar 

  36. Noury N, Rumeau P, Bourke AK, ÓLaighin G, Lundy JE. A proposal for the classification and evaluation of fall detectors. IRBM. 2008;29:340–349.

    Article  Google Scholar 

  37. Reichenbach A, Fuchs U, Kasper M, et al. Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol. 1995;90:273–281.

    Article  CAS  PubMed  Google Scholar 

  38. Radaelli MG, Martucci F, Perra S, et al. NAFLD/NASH in patients with type 2 diabetes and related treatment options. J Endocrinol Invest. 2018;41:509–521.

    Article  CAS  PubMed  Google Scholar 

  39. Liu TL, Trogdon J, Weinberger M, et al. Diabetes is associated with clinical decompensation events in patients with cirrhosis. Dig Dis Sci. 2016;61:3335–3345. https://doi.org/10.1007/s10620-016-4261-8.

    Article  PubMed  Google Scholar 

  40. Mellion M, Gilchrist JM, de la Monte S. Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle Nerve. 2011;43(3):309–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koike H, Sobue G. Alcoholic neuropathy. Curr Opin Neurol. 2006;19:481–486.

    Article  CAS  PubMed  Google Scholar 

  42. Chaudhry V, Corse AM, O’Brian R, et al. Autonomic and peripheral (sensorimotor) neuropathy in chronic liver disease: a clinical and electrophysiologic study. Hepatology. 1999;29:1698–1703.

    Article  CAS  PubMed  Google Scholar 

  43. Jain J, Singh R, Banait S, et al. Magnitude of peripheral neuropathy in cirrhosis of liver patients from central rural India. Ann Indian Acad Neurol. 2014;17:409–415.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mittal M, Singh PK, Kurrian S. Study of prevalence and pattern of peripheral neuropathy in patients with liver cirrhosis. Int J Adv Med. 2017;4:1041–1045.

    Article  Google Scholar 

  45. Cocito D, Maule S, Paolasso I, et al. High prevalence of neuropathies in patients with end-stage liver disease. Acta Neurol Scand. 2010;122:36–40.

    Article  CAS  PubMed  Google Scholar 

  46. Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc. 1994;42:1110–1117.

    Article  CAS  PubMed  Google Scholar 

  47. Son J, Ashton-Miller JA, Richardson JK. Frontal plane ankle proprioceptive thresholds and unipedal balance. Muscle Nerve. 2009;39:150–157.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ko SU, Simonsick EM, Deshpande N, et al. Ankle proprioception-associated gait patterns in older adults: results from the Baltimore longitudinal study of aging. Med Sci Sports Exerc. 2016;48:2190–2194.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Timar B, Timar R, Gaiță L, et al. The impact of diabetic neuropathy on balance and on the risk of falls in patients with type 2 diabetes mellitus: a cross-sectional study. Plos One. 2016;11:e0154654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bajaj JS, Saeian K, Verber MD, et al. Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am J Gastroenterol. 2007;102:754–760.

    Article  PubMed  Google Scholar 

  51. Bale A, Pai CG, Shetty S, et al. Prevalence of and factors associated with minimal hepatic encephalopathy in patients with cirrhosis of liver. J Clin Exp Hepatol. 2018;8:156–161.

    Article  PubMed  Google Scholar 

  52. Das A, Dhiman RK, Saraswat VA, et al. Prevalence and natural history of subclinical hepatic encephalopathy in cirrhosis. J Gastroenterol Hepatol. 2001;16:531–535.

    Article  CAS  Google Scholar 

  53. Groeneweg M, Moerland W, Quero JC, et al. Screening of subclinical hepatic encephalopathy. J Hepatol. 2000;32:748–753.

    Article  CAS  PubMed  Google Scholar 

  54. Sharma P, Sharma BC, Puri V, et al. Critical flicker frequency: diagnostic tool for minimal hepatic encephalopathy. J Hepatol. 2007;47:67–73.

    Article  CAS  PubMed  Google Scholar 

  55. van der Wardt V, Logan P, Hood V, et al. The association of specific executive functions and falls risk in people with mild cognitive impairment and early-stage dementia. Dement Geriatr Cogn Disord. 2015;40:178–185.

    Article  CAS  PubMed  Google Scholar 

  56. Urios A, Mangas-Losada A, Gimenez-Garzo C, et al. Altered postural control and stability in cirrhotic patients with minimal hepatic encephalopathy correlate with cognitive deficits. Liver Int. 2017;37:1013–1022.

    Article  CAS  PubMed  Google Scholar 

  57. Davis JC, Best JR, Khan KM, et al. Slow processing speed predicts falls in older adults with a falls history: 1-year prospective cohort study. J Am Geriatr Soc. 2017;65:916–923.

    Article  PubMed  Google Scholar 

  58. Taylor ME, Delbaere K, Lord SR, et al. Neuropsychological, physical, and functional mobility measures associated with falls in cognitively impaired older adults. J Gerontol A Biol Sci Med Sci. 2014;69:987–995.

    Article  PubMed  Google Scholar 

  59. Taylor ME, Delbaere K, Lord SR, et al. Physical impairments in cognitively impaired older people: implications for risk of falls. Int Psychogeriatr. 2013;25:148–156.

    Article  PubMed  Google Scholar 

  60. Taylor ME, Lord SR, Delbaere K, et al. Physiological fall risk factors in cognitively impaired older people: a one-year prospective study. Dement Geriatr Cogn Disord. 2012;34:181–189.

    Article  PubMed  Google Scholar 

  61. Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35:ii7–ii11.

    Article  PubMed  Google Scholar 

  62. Schmid M, Mittermaier C, Voller B, et al. Postural control in patients with liver cirrhosis: a posturographic study. Eur J Gastroenterol Hepatol. 2009;21:915–922.

    Article  PubMed  Google Scholar 

  63. Aref W, Hosni N, Naguib M, El-Basel M. Dynamic posturography findings among patients with liver cirrhosis in Egypt. Egypt J Int Med. 2012;24:100–104.

    Google Scholar 

  64. Bauby CE, Kuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33:1433–1440.

    Article  CAS  PubMed  Google Scholar 

  65. Englesbe MJ, Patel SP, He K, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–278.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tapper EB, Finkelstein D, Mittleman MA, et al. Standard assessments of frailty are validated predictors of mortality in hospitalized patients with cirrhosis. Hepatology. 2015;62:584–590.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lai JC, Covinsky KE, McCulloch CE, Feng S. The Liver Frailty Index improves mortality prediction of the subjective clinician assessment in patients with cirrhosis. Am J Gastroenterol. 2018;113:235.

    Article  PubMed  Google Scholar 

  68. Lai JC, Covinsky KE, Dodge JL. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66:564–574.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang CW, Covinsky KE, Feng S, et al. Functional impairment in older liver transplantation candidates: from the functional assessment in liver transplantation study. Liver Transpl. 2015;21:1465–1470.

    Article  PubMed  Google Scholar 

  70. Taylor ME, Lord SR, Delbaere K, et al. Reaction time and postural sway modify the effect of executive function on risk of falls in older people with mild to moderate cognitive impairment. Am J Geriatr Psychiatr. 2017;25:397–406.

    Article  Google Scholar 

  71. Martin KL, Blizzard L, Srikanth VK, et al. Cognitive function modifies the effect of physiologic function on the risk of multiple falls -a population-based study. J Gerontol A Biol Sci Med Sci. 2013;68:1091–1097.

    Article  PubMed  Google Scholar 

  72. Allet L, Kim H, Ashton-Miller J, et al. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time. Muscle Nerve. 2012;45:578–585.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Donaghy A, DeMott T, Allet L, et al. Accuracy of clinical techniques for evaluating lower limb sensorimotor functions associated with increased fall risk. PM R. 2016;8:331–339.

    Article  PubMed  Google Scholar 

  74. Eckner JT, Kutcher JS, Broglio SP, Richardson JK, et al. Effect of sport-related concussion on clinically measured simple reaction time. Br J Sports Med. 2014;48:112–118.

    Article  PubMed  Google Scholar 

  75. Eckner JT, Whitacre RD, Kirsch NL, et al. Evaluating a clinical measure of reaction time: an observational study. Percept Mot Skills. 2009;108:717–720.

    Article  PubMed  Google Scholar 

  76. Richardson JK, Eckner JT, Allet L, et al. Complex and simple clinical reaction times are associated with gait, balance, and major fall injury in older subjects with diabetic peripheral neuropathy. Am J Phys Med Rehabil. 2017;96:8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Conn HO. Trailmaking and number-connection tests in the assessment of mental state in portal systemic encephalopathy. Am J Dig Dis. 1977;22:541–550. https://doi.org/10.1007/BF01072510.

    Article  CAS  PubMed  Google Scholar 

  78. Bajaj JS, Heuman DM, Sterling RK, et al. Validation of EncephalApp, smartphone-based stroop test, for the diagnosis of covert hepatic encephalopathy. Clin Gastroenterol Hepatol. 2015;13:1828–1835.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan L. Murphy or Elliot B. Tapper.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, S.L., Tapper, E.B., Blackwood, J. et al. Why Do Individuals with Cirrhosis Fall? A Mechanistic Model for Fall Assessment, Treatment, and Research. Dig Dis Sci 64, 316–323 (2019). https://doi.org/10.1007/s10620-018-5333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5333-8

Keywords

Navigation