Digestive Diseases and Sciences

, Volume 63, Issue 5, pp 1102–1122 | Cite as

Contributions of Magnetic Resonance Imaging to Gastroenterological Practice: MRIs for GIs

  • Christopher G. Roth
  • Dina Halegoua-De Marzio
  • Flavius F. Guglielmo
Paradigm Shifts in Perspective


MRI has transformed from the theoretical, investigative realm to mainstream clinical medicine over the past four decades and has become a core component of the diagnostic toolbox in the practice of gastroenterology (GI). Its success is attributable to exquisite contrast and the ability to isolate specific proton species through the use of different pulse sequences (i.e., T1-weighted, T2-weighted, diffusion-weighted) and exploiting extracellular and hepatobiliary contrast agents. Consequently, MRI has gained preeminence in various GI clinical applications: liver and pancreatic lesion evaluation and detection, liver transplantation evaluation, pancreatitis evaluation, Crohn’s disease evaluation (using MR enterography) rectal cancer staging and perianal fistula evaluation. MR elastography, in concert with technical innovations allowing for fat and iron quantification, provides a noninvasive approach, or “MRI virtual liver biopsy” for diagnosis and management of chronic liver diseases. In the future, the arrival of ultra-high-field MR systems (7 T) and the ability to perform magnetic resonance spectroscopy in the abdomen promise even greater diagnostic insight into chronic liver disease.


Magnetic resonance imaging Elastography Enterography T1-weighted T2-weighted Diffusion-weighted Gadolinium Radiofrequency Liver Pancreas LI-RADS 


Compliance with ethical standards

Conflict of Interest

Dr. Roth is an author for Elseiver and Dr. Halegoua-De Marzio receives grant/research support from Bristol-Myers Squibb, Conatus, Galectin, Genfit, Gilead, and Intercept and has been a consultant for Alexion, Gilead, and Intercept.


  1. 1.
    Indicators O. Health at a Glance 2011. OECD Indicators. Paris: OECD Publishing; 2015. (Accessed February. 2015;15:2016).Google Scholar
  2. 2.
    Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171:1151–1153.PubMedCrossRefGoogle Scholar
  3. 3.
    Lauterbur P. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190–191.CrossRefGoogle Scholar
  4. 4.
    Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10:L55.CrossRefGoogle Scholar
  5. 5.
    Edelstein WA, Hutchison JM, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25:751.PubMedCrossRefGoogle Scholar
  6. 6.
    Doyle FH, Pennock JM, Banks LM, et al. Nuclear magnetic resonance imaging of the liver: initial experience. Am J Roentgenol. 1982;138:193–200. Scholar
  7. 7.
    Young I, Clarke G, Baffles D, Pennock J, Doyle F, Bydder G. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr. 1981;5:543–547.PubMedCrossRefGoogle Scholar
  8. 8.
    Carr DH, Brown J, Bydder GM, et al. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. Am J Roentgenol. 1984;143:215–224. Scholar
  9. 9.
    Stark DD, Felder RC, Wittenberg J, et al. Magnetic resonance imaging of cavernous hemangioma of the liver: tissue-specific characterization. Am J Roentgenol. 1985;145:213–222. Scholar
  10. 10.
    Edelman RR, Siegel JB, Singer A, Dupuis K, Longmaid HE. Dynamic MR imaging of the liver with gd-DTPA: initial clinical results. Am J Roentgenol. 1989;153:1213–1219. Scholar
  11. 11.
    Semelka RC, Shoenut JP, Kroeker MA, et al. Focal liver disease: comparison of dynamic contrast-enhanced CT and T2-weighted fat-suppressed, FLASH, and dynamic gadolinium-enhanced MR imaging at 1.5 T. Radiology. 1992;184:687–694. Scholar
  12. 12.
    Earls JP, Krinsky GA. Abdominal and pelvic applications of opposed-phase MR imaging. Am J Roentgenol. 1997;169:1071–1077. Scholar
  13. 13.
    Merkle EM, Nelson RC. Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing. Radiographics. 2006;26:1409–1418.PubMedCrossRefGoogle Scholar
  14. 14.
    Jeong YY, Mitchell DG, Holland GA. Liver lesion conspicuity: T2-weighted breath-hold fast spin-echo MR imaging before and after gadolinium enhancement—initial experience. Radiology. 2001;219:455–460.PubMedCrossRefGoogle Scholar
  15. 15.
    Ito K, Mitchell DG, Outwater EK, Szklaruk J, Sadek AG. Hepatic lesions: discrimination of nonsolid, benign lesions from solid, malignant lesions with heavily T2-weighted fast spin-echo MR imaging. Radiology.. 1997;204:729–737.PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin N, Charles-Edwards G, Grant LA. Magnetic resonance cholangiopancreatography: the ABC of MRCP. Insights Imaging. 2012;3:11–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31:1773–1791.PubMedCrossRefGoogle Scholar
  18. 18.
    Guglielmo FF, Kania LM, Ahmad HM, Roth CG, Mitchell DG. Interpreting body MRI cases: what you need to know to get started. Abdom Radiol. 2016;41:2248–2269.CrossRefGoogle Scholar
  19. 19.
    Taouli B, Koh D. Diffusion-weighted MR imaging of the Liver1. Radiology. 2010;254:47–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MR imaging. Radiol Clin North Am. 2014;52:637–656.PubMedCrossRefGoogle Scholar
  21. 21.
    Tweedle MF, Kanal E, Muller R. Considerations in the selection of a new gadolinium-based contrast agent. Appl Radiol. 2014;43:1–11.Google Scholar
  22. 22.
    van der Molen AJ, Bellin MF. Extracellular gadolinium-based contrast media: differences in diagnostic efficacy. Eur J Radiol. 2008;66:168–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Frydrychowicz A, Lubner MG, Brown JJ, et al. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging. 2012;35:492–511.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Goodwin MD, Dobson JE, Sirlin CB, Lim BG, Stella DL. Diagnostic challenges and pitfalls in MR imaging with hepatocyte-specific contrast agents. Radiographics. 2011;31:1547–1568.PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis M, Yanny S, Malcolm PN. Advantages of blood pool contrast agents in MR angiography: a pictorial review. J Med Imaging Radiat Oncol. 2012;56:187–191. Scholar
  26. 26.
    Hadizadeh DR, Gieseke J, Lohmaier SH, et al. Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA. Radiology. 2008;249:701–711.PubMedCrossRefGoogle Scholar
  27. 27.
    Umschaden HW, Szolar D, Gasser J, Umschaden M, Haselbach H. Small-bowel disease: comparison of MR enteroclysis images with conventional enteroclysis and surgical findings. Radiology. 2000;215:717–725.PubMedCrossRefGoogle Scholar
  28. 28.
    Low RN. Abdominal MRI advances in the detection of liver tumours and characterisation. Lancet Oncol. 2007;8:525–535.PubMedCrossRefGoogle Scholar
  29. 29.
    Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–2284.PubMedCrossRefGoogle Scholar
  30. 30.
    Ramalho M, Herédia V, Cardoso C, et al. Magnetic resonance imaging of small bowel Crohn’s disease. Acta Med Port. 2012;25:231–240.PubMedGoogle Scholar
  31. 31.
    Cronin CG, Lohan DG, Browne AM, Roche C, Murphy JM. Does MRI with oral contrast medium allow single-study depiction of inflammatory bowel disease enteritis and colitis? Eur Radiol. 2010;20:1667–1674.PubMedCrossRefGoogle Scholar
  32. 32.
    Schwartz DA, Wiersema MJ, Dudiak KM, et al. A comparison of endoscopic ultrasound, magnetic resonance imaging, and exam under anesthesia for evaluation of Crohn’s perianal fistulas. Gastroenterology. 2001;121:1064–1072.PubMedCrossRefGoogle Scholar
  33. 33.
    Froehlich JM, Patak MA, von Weymarn C, Juli CF, Zollikofer CL, Wentz K. Small bowel motility assessment with magnetic resonance imaging. J Magn Reson Imaging. 2005;21:370–375.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu B, Ramalho M, AlObaidy M, et al. Gastrointestinal imaging-practical magnetic resonance imaging approach. World J Radiol. 2014;6:544–566. Scholar
  35. 35.
    Itai Y, Ohtomo K, Furui S, Yamauchi T, Minami M, Yashiro N. Noninvasive diagnosis of small cavernous hemangioma of the liver: advantage of MRI. Am J Roentgenol. 1985;145:1195–1199. Scholar
  36. 36.
    Wittenberg J, Stark DD, Forman BH, et al. Differentiation of hepatic metastases from hepatic hemangiomas and cysts by using MR imaging. Am J Roentgenol. 1988;151:79–84. Scholar
  37. 37.
    Lombardo DM, Baker ME, Spritzer CE, Blinder R, Meyers W, Herfkens RJ. Hepatic hemangiomas vs metastases: MR differentiation at 1.5 T. Am J Roentgenol. 1990;155:55–59. Scholar
  38. 38.
    Mitchell DG, Saini S, Weinreb J, et al. Hepatic metastases and cavernous hemangiomas: Distinction with standard- and triple-dose gadoteridol-enhanced MR imaging. Radiology. 1994;193:49–57. Scholar
  39. 39.
    Seo HJ, Kim MJ, Lee JD, Chung WS, Kim YE. Gadoxetate disodium-enhanced magnetic resonance imaging versus contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of colorectal liver metastases. Invest Radiol. 2011;46:548–555. Scholar
  40. 40.
    Muhi A, Ichikawa T, Motosugi U, et al. Diagnosis of colorectal hepatic metastases: Comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI. J Magn Reson Imaging. 2011;34:326–335.PubMedCrossRefGoogle Scholar
  41. 41.
    Haradome H, Grazioli L, Tsunoo M, Motosugi U, Kwee TC, Takaraha T. Gadoxetic acid disodium-enhanced hepatocyte phase MRI: can increasing the flip angle improve focal liver lesion detection? J Magn Reson Imaging. 2012;35:132–139.PubMedCrossRefGoogle Scholar
  42. 42.
    Bieze M, van den Esschert JW, Nio CY, et al. Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. Am J Roentgenol. 2012;199:26–34.CrossRefGoogle Scholar
  43. 43.
    Grieser C, Steffen IG, Seehofer D, et al. Histopathologically confirmed focal nodular hyperplasia of the liver: gadoxetic acid-enhanced MRI characteristics. Magn Reson Imaging. 2013;31:755–760.PubMedCrossRefGoogle Scholar
  44. 44.
    Gupta RT, Iseman CM, Leyendecker JR, Shyknevsky I, Merkle EM, Taouli B. Diagnosis of focal nodular hyperplasia with MRI: multicenter retrospective study comparing gadobenate dimeglumine to gadoxetate disodium. Am J Roentgenol. 2012;199:35–43.CrossRefGoogle Scholar
  45. 45.
    Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology. 2018;67:401–421.PubMedCrossRefGoogle Scholar
  46. 46.
    Saranathan M, Rettmann DW, Hargreaves BA, et al. Differential subsampling with Cartesian ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging. 2012;35:1484–1492.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    El-Serag HB. Hepatocellular carcinoma: Recent trends in the united states. Gastroenterology. 2004;127:S27–S34.PubMedCrossRefGoogle Scholar
  48. 48.
    El-Serag HB. Current concepts. N Engl J Med. 2011;365:1118–1127.PubMedCrossRefGoogle Scholar
  49. 49.
    Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127:S35–S50.PubMedCrossRefGoogle Scholar
  50. 50.
    Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30:1434–1440.PubMedCrossRefGoogle Scholar
  51. 51.
    Fong Y, Sun RL, Jarnagin W, Blumgart LH. An analysis of 412 cases of hepatocellular carcinoma at a western center. Ann Surg. 1999;229:790–799. (discussion 799–800).PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–1022.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–700.PubMedCrossRefGoogle Scholar
  54. 54.
    Chan SC. Liver transplantation for hepatocellular carcinoma. Liver Cancer. 2013;2:338–344. Scholar
  55. 55.
    Ramalho M, Matos AP, AlObaidy M, Velloni F, Altun E, Semelka RC. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment—part 2. Radiol Bras. 2017;50:115–125.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jha RC, Mitchell DG, Weinreb JC, et al. LI-RADS categorization of benign and likely benign findings in patients at risk of hepatocellular carcinoma: a pictorial atlas. Am J Roentgenol. 2014;203:W48–W69.CrossRefGoogle Scholar
  57. 57.
    Tang A, Cruite I, Mitchell DG, et al. Hepatocellular carcinoma imaging systems: why they exist, how they evolved, and how they differ. Abdom Radiol. 2018;43:3–12.CrossRefGoogle Scholar
  58. 58.
    Bret PM, Labadie M, Bretagnolle M, et al. Hepatocellular carcinoma: diagnosis by percutaneous fine needle biopsy. Gastrointest Radiol. 1988;13:253–255.PubMedCrossRefGoogle Scholar
  59. 59.
    Giorgio A, Tarantino L, de Stefano G, et al. Complications after interventional sonography of focal liver lesions: a 22-year single-center experience. J Ultrasound Med. 2003;22:193–205.PubMedCrossRefGoogle Scholar
  60. 60.
    Caturelli E, Solmi L, Anti M, et al. Ultrasound guided fine needle biopsy of early hepatocellular carcinoma complicating liver cirrhosis: a multicentre study. Gut. 2004;53:1356–1362.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Scholmerich J, Schacherer D. Diagnostic biopsy for hepatocellular carcinoma in cirrhosis: useful, necessary, dangerous, or academic sport? Gut. 2004;53:1224–1226.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Forner A, Vilana R, Ayuso C, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008;47:97–104.PubMedCrossRefGoogle Scholar
  63. 63.
    Durand F, Regimbeau JM, Belghiti J, et al. Assessment of the benefits and risks of percutaneous biopsy before surgical resection of hepatocellular carcinoma. J Hepatol. 2001;35:254–258.PubMedCrossRefGoogle Scholar
  64. 64.
    Takamori R, Wong LL, Dang C, et al. Needle-tract implantation from hepatocellular cancer: is needle biopsy of the liver always necessary? Liver Transpl. 2000;6:67–72.PubMedGoogle Scholar
  65. 65.
    Silva MA, Hegab B, Hyde C, et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57:1592–1596.PubMedCrossRefGoogle Scholar
  66. 66.
    Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–447.PubMedCrossRefGoogle Scholar
  67. 67.
    Ronot M, Fouque O, Esvan M, et al. Comparison of accuracy of AASLD and LI-RADS criteria for the non-invasive diagnosis of HCC smaller than 3 cm. J Hepatol. 2017; Available online 21 December 2017, Accessed February 18, 2018.
  68. 68.
    Liu W, Qin J, Guo R, et al. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol. 2018;59:140–146.PubMedCrossRefGoogle Scholar
  69. 69.
    Mitchell DG, Bashir MR, Sirlin CG. Management implications and outcomes of LI-RADS-2, -3, -4 and -M lesions. Abdom Radiol. 2018;43:143–148.CrossRefGoogle Scholar
  70. 70.
    Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (liver imaging reporting and data system): Summary, discussion, and consensus of the LI-RADS management working group and future directions. Hepatology. 2015;61:1056–1065.PubMedCrossRefGoogle Scholar
  71. 71.
    Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–442.PubMedCrossRefGoogle Scholar
  72. 72.
    Roth CG, Mitchell DG. Hepatocellular carcinoma and other hepatic malignancies: MR imaging. Radiol Clin North Am. 2014;52:683–707.PubMedCrossRefGoogle Scholar
  73. 73.
    Younossi ZM, Stepanova M, Afendy M, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the united states from 1988 to 2008. Clin Gastroenterol Hepatol. 2011;9:e1.CrossRefGoogle Scholar
  74. 74.
    Chen J, Yin M, Glaser KJ, Talwalkar JA, Ehman RL. MR elastography of liver disease: state of the art. Appl Radiol. 2013;42:5–12.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am. 2014;22:433–446.PubMedCrossRefGoogle Scholar
  76. 76.
    Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38:1449–1457.PubMedCrossRefGoogle Scholar
  77. 77.
    Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–2618.PubMedCrossRefGoogle Scholar
  78. 78.
    West J, Card TR. Reduced mortality rates following elective percutaneous liver biopsies. Gastroenterology. 2010;139:1230–1237.PubMedCrossRefGoogle Scholar
  79. 79.
    Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs MR elastography. Abdom Imaging. 2015;40:766–775.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5:e2.CrossRefGoogle Scholar
  81. 81.
    Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology. 2012;55:2005–2023.PubMedCrossRefGoogle Scholar
  82. 82.
    Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the united states. Gastroenterology. 2011;141:1249–1253.PubMedCrossRefGoogle Scholar
  83. 83.
    Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51:1820–1832.PubMedCrossRefGoogle Scholar
  84. 84.
    Kinner S, Reeder SB, Yokoo T. Quantitative imaging biomarkers of NAFLD. Dig Dis Sci. 2016;61:1337–1347.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18:337–357.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34:729–749.PubMedCrossRefGoogle Scholar
  87. 87.
    Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology. 2013;267:767–775.PubMedCrossRefGoogle Scholar
  88. 88.
    Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am. 2010;18:359–381.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Anderson ER, Shah YM. Iron homeostasis in the liver. Compr Physiol. 2013;3:315–330.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wallner BK, Schumacher KA, Weidenmaier W, Friedrich JM. Dilated biliary tract: evaluation with MR cholangiography with a T2-weighted contrast-enhanced fast sequence. Radiology. 1991;181:805–808. Scholar
  91. 91.
    Varghese J, Farrell M, Courtney G, Osborne H, Murray F, Lee M. A prospective comparison of magnetic resonance cholangiopancreatography with endoscopic retrograde cholangiopancreatography in the evaluation of patients with suspected biliary tract disease. Clin Radiol. 1999;54:513–520.PubMedCrossRefGoogle Scholar
  92. 92.
    Guibaud L, Bret PM, Reinhold C, Atri M, Barkun AN. Diagnosis of choledocholithiasis: Value of MR cholangiography. Am J Roentgenol. 1994;163:847–850. Scholar
  93. 93.
    Boraschi P, Neri E, Braccini G, et al. Choledocolithiasis: diagnostic accuracy of MR cholangiopancreatography. Three-year experience. Magn Reson Imaging. 1999;17:1245–1253.PubMedCrossRefGoogle Scholar
  94. 94.
    Coakley FV, Schwartz LH. Magnetic resonance cholangiopancreatography. J Magn Reson Imaging. 1999;9:157–162.PubMedCrossRefGoogle Scholar
  95. 95.
    Margulis AR, Fisher MR. Present clinical status of magnetic resonance imaging. Magn Reson Med. 1985;2:309–327.PubMedCrossRefGoogle Scholar
  96. 96.
    Chezmar JL, Nelson RC, Small WC, Bernardino ME. Magnetic resonance imaging of the pancreas with gadolinium-DTPA. Abdom Imaging. 1991;16:139–142.Google Scholar
  97. 97.
    Semelka RC, Ascher SM. MR imaging of the pancreas. Radiology. 1993;188:593–602. Scholar
  98. 98.
    Miller FH, Rini NJ, Keppke AL. MRI of adenocarcinoma of the pancreas. Am J Roentgenol. 2006;187:W365–W374.CrossRefGoogle Scholar
  99. 99.
    Ichikawa T, Sou H, Araki T, et al. Duct-penetrating sign at MRCP: Usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology. 2001;221:107–116.PubMedCrossRefGoogle Scholar
  100. 100.
    Lemke A, Laun FB, Klauss M, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol. 2009;44:769–775. Scholar
  101. 101.
    Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2005;29:163–169.PubMedCrossRefGoogle Scholar
  102. 102.
    Fidler J. MR imaging of the small bowel. Radiol Clin North Am. 2007;45:317–331.PubMedCrossRefGoogle Scholar
  103. 103.
    Fidler JL, Guimaraes L, Einstein DM. MR imaging of the small bowel. Radiographics. 2009;29:1811–1825.PubMedCrossRefGoogle Scholar
  104. 104.
    Young BM, Fletcher JG, Booya F, et al. Head-to-head comparison of oral contrast agents for cross-sectional enterography: Small bowel distention, timing, and side effects. J Comput Assist Tomogr. 2008;32:32–38. Scholar
  105. 105.
    Masselli G, Gualdi G. MR imaging of the small bowel. Radiology. 2012;264:333–348.PubMedCrossRefGoogle Scholar
  106. 106.
    Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26:1621–1636.PubMedCrossRefGoogle Scholar
  107. 107.
    Wnorowski AM, Guglielmo FF, Mitchell DG. How to perform and interpret cine MR enterography. J Magn Reson Imaging. 2015;42:1180–1189.PubMedCrossRefGoogle Scholar
  108. 108.
    Grand DJ, Guglielmo FF, Al-Hawary MM. MR enterography in Crohn’s disease: Current consensus on optimal imaging technique and future advances from the SAR crohn’s disease-focused panel. Abdom Imaging. 2015;40:953–964.PubMedCrossRefGoogle Scholar
  109. 109.
    Lee SS, Kim AY, Yang S, et al. Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques. Radiology. 2009;251:751–761.PubMedCrossRefGoogle Scholar
  110. 110.
    Samuel S, Bruining DH, Loftus EV, et al. Endoscopic skipping of the distal terminal ileum in crohn’s disease can lead to negative results from ileocolonoscopy. Clin Gastroenterol Hepatol. 2012;10:1253–1259.PubMedCrossRefGoogle Scholar
  111. 111.
    Fletcher JG, Fidler JL, Bruining DH, Huprich JE. New concepts in intestinal imaging for inflammatory bowel diseases. Gastroenterology. 2011;140:e7.CrossRefGoogle Scholar
  112. 112.
    Siddiki HA, Fidler JL, Fletcher JG, et al. Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel crohn’s disease. Am J Roentgenol. 2009;193:113–121.CrossRefGoogle Scholar
  113. 113.
    Bruining DH, Siddiki HA, Fletcher JG, Tremaine WJ, Sandborn WJ, Loftus EV. Prevalence of penetrating disease and extraintestinal manifestations of crohn’s disease detected with CT enterography. Inflamm Bowel Dis. 2008;14:1701–1706.PubMedCrossRefGoogle Scholar
  114. 114.
    Taylor FG, Swift RI, Blomqvist L, Brown G. A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. Am J Roentgenol. 2008;191:1827–1835.CrossRefGoogle Scholar
  115. 115.
    Patel UB, Taylor F, Blomqvist L, et al. Magnetic resonance imaging–detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol. 2011;29:3753–3760.PubMedCrossRefGoogle Scholar
  116. 116.
    de Miguel Criado J, del Salto LG, Rivas PF, et al. MR imaging evaluation of perianal fistulas: spectrum of imaging features. Radiographics. 2011;32:175–194.Google Scholar
  117. 117.
    Morris J, Spencer JA, Ambrose NS. MR imaging classification of perianal fistulas and its implications for patient management. Radiographics. 2000;20:623–635.PubMedCrossRefGoogle Scholar
  118. 118.
    Gecse KB, Bemelman W, Kamm MA, et al. A global consensus on the classification, diagnosis and multidisciplinary treatment of perianal fistulising crohn’s disease. Gut. 2014;63:1381–1392. Scholar
  119. 119.
    Pedrosa I, Lafornara M, Pandharipande PV, Goldsmith JD, Rofsky NM. Pregnant patients suspected of having acute appendicitis: effect of MR imaging on negative laparotomy rate and appendiceal perforation rate. Radiology. 2009;250:749–757.PubMedCrossRefGoogle Scholar
  120. 120.
    Pedrosa I, Levine D, Eyvazzadeh AD, Siewert B, Ngo L, Rofsky NM. MR imaging evaluation of acute appendicitis in pregnancy. Radiology. 2006;238:891–899.PubMedCrossRefGoogle Scholar
  121. 121.
    Abrigo JM, Shen J, Wong VW, et al. Nonalcoholic fatty liver disease: spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study. J Hepatol. 2014;60:809–815.PubMedCrossRefGoogle Scholar
  122. 122.
    Traussnigg S, Kienbacher C, Gajdošík M, et al. P1045: ultra-high-field MR-spectroscopy in NAFLD as non-invasive in-vivo tool for monitoring changes in fat and energy metabolism with potential identification of NASH and advanced fibrosis by saturation transfer technique. J Hepatol. 2015;62:S739–S740.CrossRefGoogle Scholar
  123. 123.
    Dezortova M, Taimr P, Skoch A, Spicak J, Hajek M. Etiology and functional status of liver cirrhosis by 31P MR spectroscopy. World J Gastroenterol. 2005;11:6926–6931.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Purvis LA, Clarke WT, Valkovič L, et al. Phosphodiester content measured in human liver by in vivo 31P MR spectroscopy at 7 tesla. Magn Reson Med. 2017;78:2095–2105.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christopher G. Roth
    • 1
  • Dina Halegoua-De Marzio
    • 1
  • Flavius F. Guglielmo
    • 1
  1. 1.Department of RadiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations