Skip to main content

Advertisement

Log in

Contributions of Magnetic Resonance Imaging to Gastroenterological Practice: MRIs for GIs

  • Paradigm Shifts in Perspective
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

MRI has transformed from the theoretical, investigative realm to mainstream clinical medicine over the past four decades and has become a core component of the diagnostic toolbox in the practice of gastroenterology (GI). Its success is attributable to exquisite contrast and the ability to isolate specific proton species through the use of different pulse sequences (i.e., T1-weighted, T2-weighted, diffusion-weighted) and exploiting extracellular and hepatobiliary contrast agents. Consequently, MRI has gained preeminence in various GI clinical applications: liver and pancreatic lesion evaluation and detection, liver transplantation evaluation, pancreatitis evaluation, Crohn’s disease evaluation (using MR enterography) rectal cancer staging and perianal fistula evaluation. MR elastography, in concert with technical innovations allowing for fat and iron quantification, provides a noninvasive approach, or “MRI virtual liver biopsy” for diagnosis and management of chronic liver diseases. In the future, the arrival of ultra-high-field MR systems (7 T) and the ability to perform magnetic resonance spectroscopy in the abdomen promise even greater diagnostic insight into chronic liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. T1- and T2-weighted imaging in MRI refers to two different strategies that exploit the unique behavior of different proton species reacting to electromagnetic energy, or radiofrequency pulses, in a strong magnetic field. T1-weighting is accomplished by repeating radiofrequency pulses either very rapidly and/or with high intensity to selectively isolate those protons that rapidly realign their nuclear spin with the main magnetic field (defined as having a low T1 value, which refers to the time elapsed for a proton to achieve 63% realignment with the main magnetic field). T1-weighting favors signal from protons with short T1 values, such as gadolinium and methemoglobin (blood). T2-weighting is accomplished by prolonging the acquisition of data, or the reception of the emitted radiofrequency energy from protons following an radiofrequency pulse to selectively isolate the received signal from proton species retaining relatively greater transverse, or coherent, magnetization as a function of their proton-specific T2 value (which is the time elapsed for 63% of transverse magnetization to decay following excitation by a radiofrequency energy pulse). T2-weighting favors signal from protons with long T2 values, such as water protons.

References

  1. Indicators O. Health at a Glance 2011. OECD Indicators. Paris: OECD Publishing; 2015. https://doi.org/10.1787/health_glance-2015-en. (Accessed February. 2015;15:2016).

    Google Scholar 

  2. Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171:1151–1153.

    Article  CAS  PubMed  Google Scholar 

  3. Lauterbur P. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242:190–191.

    Article  CAS  Google Scholar 

  4. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10:L55.

    Article  CAS  Google Scholar 

  5. Edelstein WA, Hutchison JM, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25:751.

    Article  CAS  PubMed  Google Scholar 

  6. Doyle FH, Pennock JM, Banks LM, et al. Nuclear magnetic resonance imaging of the liver: initial experience. Am J Roentgenol. 1982;138:193–200. https://doi.org/10.2214/ajr.138.2.193.

    Article  CAS  Google Scholar 

  7. Young I, Clarke G, Baffles D, Pennock J, Doyle F, Bydder G. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr. 1981;5:543–547.

    Article  CAS  PubMed  Google Scholar 

  8. Carr DH, Brown J, Bydder GM, et al. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. Am J Roentgenol. 1984;143:215–224. https://doi.org/10.2214/ajr.143.2.215.

    Article  CAS  Google Scholar 

  9. Stark DD, Felder RC, Wittenberg J, et al. Magnetic resonance imaging of cavernous hemangioma of the liver: tissue-specific characterization. Am J Roentgenol. 1985;145:213–222. https://doi.org/10.2214/ajr.145.2.213.

    Article  CAS  Google Scholar 

  10. Edelman RR, Siegel JB, Singer A, Dupuis K, Longmaid HE. Dynamic MR imaging of the liver with gd-DTPA: initial clinical results. Am J Roentgenol. 1989;153:1213–1219. https://doi.org/10.2214/ajr.153.6.1213.

    Article  CAS  Google Scholar 

  11. Semelka RC, Shoenut JP, Kroeker MA, et al. Focal liver disease: comparison of dynamic contrast-enhanced CT and T2-weighted fat-suppressed, FLASH, and dynamic gadolinium-enhanced MR imaging at 1.5 T. Radiology. 1992;184:687–694. https://doi.org/10.1148/radiology.184.3.1324509.

    Article  CAS  PubMed  Google Scholar 

  12. Earls JP, Krinsky GA. Abdominal and pelvic applications of opposed-phase MR imaging. Am J Roentgenol. 1997;169:1071–1077. https://doi.org/10.2214/ajr.169.4.9308467.

    Article  CAS  Google Scholar 

  13. Merkle EM, Nelson RC. Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing. Radiographics. 2006;26:1409–1418.

    Article  PubMed  Google Scholar 

  14. Jeong YY, Mitchell DG, Holland GA. Liver lesion conspicuity: T2-weighted breath-hold fast spin-echo MR imaging before and after gadolinium enhancement—initial experience. Radiology. 2001;219:455–460.

    Article  CAS  PubMed  Google Scholar 

  15. Ito K, Mitchell DG, Outwater EK, Szklaruk J, Sadek AG. Hepatic lesions: discrimination of nonsolid, benign lesions from solid, malignant lesions with heavily T2-weighted fast spin-echo MR imaging. Radiology.. 1997;204:729–737.

    Article  CAS  PubMed  Google Scholar 

  16. Griffin N, Charles-Edwards G, Grant LA. Magnetic resonance cholangiopancreatography: the ABC of MRCP. Insights Imaging. 2012;3:11–21.

    Article  PubMed  Google Scholar 

  17. Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics. 2011;31:1773–1791.

    Article  PubMed  Google Scholar 

  18. Guglielmo FF, Kania LM, Ahmad HM, Roth CG, Mitchell DG. Interpreting body MRI cases: what you need to know to get started. Abdom Radiol. 2016;41:2248–2269.

    Article  Google Scholar 

  19. Taouli B, Koh D. Diffusion-weighted MR imaging of the Liver1. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  20. Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MR imaging. Radiol Clin North Am. 2014;52:637–656.

    Article  PubMed  Google Scholar 

  21. Tweedle MF, Kanal E, Muller R. Considerations in the selection of a new gadolinium-based contrast agent. Appl Radiol. 2014;43:1–11.

    Google Scholar 

  22. van der Molen AJ, Bellin MF. Extracellular gadolinium-based contrast media: differences in diagnostic efficacy. Eur J Radiol. 2008;66:168–174.

    Article  PubMed  Google Scholar 

  23. Frydrychowicz A, Lubner MG, Brown JJ, et al. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging. 2012;35:492–511.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goodwin MD, Dobson JE, Sirlin CB, Lim BG, Stella DL. Diagnostic challenges and pitfalls in MR imaging with hepatocyte-specific contrast agents. Radiographics. 2011;31:1547–1568.

    Article  PubMed  Google Scholar 

  25. Lewis M, Yanny S, Malcolm PN. Advantages of blood pool contrast agents in MR angiography: a pictorial review. J Med Imaging Radiat Oncol. 2012;56:187–191. https://doi.org/10.1111/j.1754-9485.2012.02347.x.

    Article  PubMed  Google Scholar 

  26. Hadizadeh DR, Gieseke J, Lohmaier SH, et al. Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA. Radiology. 2008;249:701–711.

    Article  PubMed  Google Scholar 

  27. Umschaden HW, Szolar D, Gasser J, Umschaden M, Haselbach H. Small-bowel disease: comparison of MR enteroclysis images with conventional enteroclysis and surgical findings. Radiology. 2000;215:717–725.

    Article  CAS  PubMed  Google Scholar 

  28. Low RN. Abdominal MRI advances in the detection of liver tumours and characterisation. Lancet Oncol. 2007;8:525–535.

    Article  PubMed  Google Scholar 

  29. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–2284.

    Article  CAS  PubMed  Google Scholar 

  30. Ramalho M, Herédia V, Cardoso C, et al. Magnetic resonance imaging of small bowel Crohn’s disease. Acta Med Port. 2012;25:231–240.

    PubMed  Google Scholar 

  31. Cronin CG, Lohan DG, Browne AM, Roche C, Murphy JM. Does MRI with oral contrast medium allow single-study depiction of inflammatory bowel disease enteritis and colitis? Eur Radiol. 2010;20:1667–1674.

    Article  PubMed  Google Scholar 

  32. Schwartz DA, Wiersema MJ, Dudiak KM, et al. A comparison of endoscopic ultrasound, magnetic resonance imaging, and exam under anesthesia for evaluation of Crohn’s perianal fistulas. Gastroenterology. 2001;121:1064–1072.

    Article  CAS  PubMed  Google Scholar 

  33. Froehlich JM, Patak MA, von Weymarn C, Juli CF, Zollikofer CL, Wentz K. Small bowel motility assessment with magnetic resonance imaging. J Magn Reson Imaging. 2005;21:370–375.

    Article  PubMed  Google Scholar 

  34. Liu B, Ramalho M, AlObaidy M, et al. Gastrointestinal imaging-practical magnetic resonance imaging approach. World J Radiol. 2014;6:544–566. https://doi.org/10.4329/wjr.v6.i8.544.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Itai Y, Ohtomo K, Furui S, Yamauchi T, Minami M, Yashiro N. Noninvasive diagnosis of small cavernous hemangioma of the liver: advantage of MRI. Am J Roentgenol. 1985;145:1195–1199. https://doi.org/10.2214/ajr.145.6.1195.

    Article  CAS  Google Scholar 

  36. Wittenberg J, Stark DD, Forman BH, et al. Differentiation of hepatic metastases from hepatic hemangiomas and cysts by using MR imaging. Am J Roentgenol. 1988;151:79–84. https://doi.org/10.2214/ajr.151.1.79.

    Article  CAS  Google Scholar 

  37. Lombardo DM, Baker ME, Spritzer CE, Blinder R, Meyers W, Herfkens RJ. Hepatic hemangiomas vs metastases: MR differentiation at 1.5 T. Am J Roentgenol. 1990;155:55–59. https://doi.org/10.2214/ajr.155.1.2112864.

    Article  CAS  Google Scholar 

  38. Mitchell DG, Saini S, Weinreb J, et al. Hepatic metastases and cavernous hemangiomas: Distinction with standard- and triple-dose gadoteridol-enhanced MR imaging. Radiology. 1994;193:49–57. https://doi.org/10.1148/radiology.193.1.8090921.

    Article  CAS  PubMed  Google Scholar 

  39. Seo HJ, Kim MJ, Lee JD, Chung WS, Kim YE. Gadoxetate disodium-enhanced magnetic resonance imaging versus contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of colorectal liver metastases. Invest Radiol. 2011;46:548–555. https://doi.org/10.1097/RLI.0b013e31821a2163.

    Article  CAS  PubMed  Google Scholar 

  40. Muhi A, Ichikawa T, Motosugi U, et al. Diagnosis of colorectal hepatic metastases: Comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI. J Magn Reson Imaging. 2011;34:326–335.

    Article  PubMed  Google Scholar 

  41. Haradome H, Grazioli L, Tsunoo M, Motosugi U, Kwee TC, Takaraha T. Gadoxetic acid disodium-enhanced hepatocyte phase MRI: can increasing the flip angle improve focal liver lesion detection? J Magn Reson Imaging. 2012;35:132–139.

    Article  PubMed  Google Scholar 

  42. Bieze M, van den Esschert JW, Nio CY, et al. Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. Am J Roentgenol. 2012;199:26–34.

    Article  Google Scholar 

  43. Grieser C, Steffen IG, Seehofer D, et al. Histopathologically confirmed focal nodular hyperplasia of the liver: gadoxetic acid-enhanced MRI characteristics. Magn Reson Imaging. 2013;31:755–760.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta RT, Iseman CM, Leyendecker JR, Shyknevsky I, Merkle EM, Taouli B. Diagnosis of focal nodular hyperplasia with MRI: multicenter retrospective study comparing gadobenate dimeglumine to gadoxetate disodium. Am J Roentgenol. 2012;199:35–43.

    Article  Google Scholar 

  45. Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology. 2018;67:401–421.

    Article  PubMed  Google Scholar 

  46. Saranathan M, Rettmann DW, Hargreaves BA, et al. Differential subsampling with Cartesian ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging. 2012;35:1484–1492.

    Article  PubMed  PubMed Central  Google Scholar 

  47. El-Serag HB. Hepatocellular carcinoma: Recent trends in the united states. Gastroenterology. 2004;127:S27–S34.

    Article  PubMed  Google Scholar 

  48. El-Serag HB. Current concepts. N Engl J Med. 2011;365:1118–1127.

    Article  CAS  PubMed  Google Scholar 

  49. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127:S35–S50.

    Article  PubMed  Google Scholar 

  50. Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30:1434–1440.

    Article  CAS  PubMed  Google Scholar 

  51. Fong Y, Sun RL, Jarnagin W, Blumgart LH. An analysis of 412 cases of hepatocellular carcinoma at a western center. Ann Surg. 1999;229:790–799. (discussion 799–800).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–1022.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–700.

    Article  CAS  PubMed  Google Scholar 

  54. Chan SC. Liver transplantation for hepatocellular carcinoma. Liver Cancer. 2013;2:338–344. https://doi.org/10.1159/000343849.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramalho M, Matos AP, AlObaidy M, Velloni F, Altun E, Semelka RC. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment—part 2. Radiol Bras. 2017;50:115–125.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jha RC, Mitchell DG, Weinreb JC, et al. LI-RADS categorization of benign and likely benign findings in patients at risk of hepatocellular carcinoma: a pictorial atlas. Am J Roentgenol. 2014;203:W48–W69.

    Article  Google Scholar 

  57. Tang A, Cruite I, Mitchell DG, et al. Hepatocellular carcinoma imaging systems: why they exist, how they evolved, and how they differ. Abdom Radiol. 2018;43:3–12.

    Article  Google Scholar 

  58. Bret PM, Labadie M, Bretagnolle M, et al. Hepatocellular carcinoma: diagnosis by percutaneous fine needle biopsy. Gastrointest Radiol. 1988;13:253–255.

    Article  CAS  PubMed  Google Scholar 

  59. Giorgio A, Tarantino L, de Stefano G, et al. Complications after interventional sonography of focal liver lesions: a 22-year single-center experience. J Ultrasound Med. 2003;22:193–205.

    Article  PubMed  Google Scholar 

  60. Caturelli E, Solmi L, Anti M, et al. Ultrasound guided fine needle biopsy of early hepatocellular carcinoma complicating liver cirrhosis: a multicentre study. Gut. 2004;53:1356–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scholmerich J, Schacherer D. Diagnostic biopsy for hepatocellular carcinoma in cirrhosis: useful, necessary, dangerous, or academic sport? Gut. 2004;53:1224–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Forner A, Vilana R, Ayuso C, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008;47:97–104.

    Article  PubMed  Google Scholar 

  63. Durand F, Regimbeau JM, Belghiti J, et al. Assessment of the benefits and risks of percutaneous biopsy before surgical resection of hepatocellular carcinoma. J Hepatol. 2001;35:254–258.

    Article  CAS  PubMed  Google Scholar 

  64. Takamori R, Wong LL, Dang C, et al. Needle-tract implantation from hepatocellular cancer: is needle biopsy of the liver always necessary? Liver Transpl. 2000;6:67–72.

    CAS  PubMed  Google Scholar 

  65. Silva MA, Hegab B, Hyde C, et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57:1592–1596.

    Article  CAS  PubMed  Google Scholar 

  66. Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–447.

    Article  CAS  PubMed  Google Scholar 

  67. Ronot M, Fouque O, Esvan M, et al. Comparison of accuracy of AASLD and LI-RADS criteria for the non-invasive diagnosis of HCC smaller than 3 cm. J Hepatol. 2017; Available online 21 December 2017, Accessed February 18, 2018. https://doi.org/10.1016/j.jhep.2017.12.014.

  68. Liu W, Qin J, Guo R, et al. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol. 2018;59:140–146.

    Article  PubMed  Google Scholar 

  69. Mitchell DG, Bashir MR, Sirlin CG. Management implications and outcomes of LI-RADS-2, -3, -4 and -M lesions. Abdom Radiol. 2018;43:143–148.

    Article  Google Scholar 

  70. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (liver imaging reporting and data system): Summary, discussion, and consensus of the LI-RADS management working group and future directions. Hepatology. 2015;61:1056–1065.

    Article  PubMed  Google Scholar 

  71. Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37:429–442.

    Article  CAS  PubMed  Google Scholar 

  72. Roth CG, Mitchell DG. Hepatocellular carcinoma and other hepatic malignancies: MR imaging. Radiol Clin North Am. 2014;52:683–707.

    Article  PubMed  Google Scholar 

  73. Younossi ZM, Stepanova M, Afendy M, et al. Changes in the prevalence of the most common causes of chronic liver diseases in the united states from 1988 to 2008. Clin Gastroenterol Hepatol. 2011;9:e1.

    Article  Google Scholar 

  74. Chen J, Yin M, Glaser KJ, Talwalkar JA, Ehman RL. MR elastography of liver disease: state of the art. Appl Radiol. 2013;42:5–12.

    PubMed  PubMed Central  Google Scholar 

  75. Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am. 2014;22:433–446.

    Article  PubMed  Google Scholar 

  76. Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38:1449–1457.

    Article  PubMed  Google Scholar 

  77. Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–2618.

    Article  PubMed  Google Scholar 

  78. West J, Card TR. Reduced mortality rates following elective percutaneous liver biopsies. Gastroenterology. 2010;139:1230–1237.

    Article  PubMed  Google Scholar 

  79. Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs MR elastography. Abdom Imaging. 2015;40:766–775.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5:e2.

    Article  Google Scholar 

  81. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology. 2012;55:2005–2023.

    Article  PubMed  Google Scholar 

  82. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the united states. Gastroenterology. 2011;141:1249–1253.

    Article  PubMed  Google Scholar 

  83. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51:1820–1832.

    Article  PubMed  Google Scholar 

  84. Kinner S, Reeder SB, Yokoo T. Quantitative imaging biomarkers of NAFLD. Dig Dis Sci. 2016;61:1337–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18:337–357.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34:729–749.

    Article  PubMed  Google Scholar 

  87. Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology. 2013;267:767–775.

    Article  PubMed  Google Scholar 

  88. Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am. 2010;18:359–381.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Anderson ER, Shah YM. Iron homeostasis in the liver. Compr Physiol. 2013;3:315–330.

    PubMed  PubMed Central  Google Scholar 

  90. Wallner BK, Schumacher KA, Weidenmaier W, Friedrich JM. Dilated biliary tract: evaluation with MR cholangiography with a T2-weighted contrast-enhanced fast sequence. Radiology. 1991;181:805–808. https://doi.org/10.1148/radiology.181.3.1947101.

    Article  CAS  PubMed  Google Scholar 

  91. Varghese J, Farrell M, Courtney G, Osborne H, Murray F, Lee M. A prospective comparison of magnetic resonance cholangiopancreatography with endoscopic retrograde cholangiopancreatography in the evaluation of patients with suspected biliary tract disease. Clin Radiol. 1999;54:513–520.

    Article  CAS  PubMed  Google Scholar 

  92. Guibaud L, Bret PM, Reinhold C, Atri M, Barkun AN. Diagnosis of choledocholithiasis: Value of MR cholangiography. Am J Roentgenol. 1994;163:847–850. https://doi.org/10.2214/ajr.163.4.8092021.

    Article  CAS  Google Scholar 

  93. Boraschi P, Neri E, Braccini G, et al. Choledocolithiasis: diagnostic accuracy of MR cholangiopancreatography. Three-year experience. Magn Reson Imaging. 1999;17:1245–1253.

    Article  CAS  PubMed  Google Scholar 

  94. Coakley FV, Schwartz LH. Magnetic resonance cholangiopancreatography. J Magn Reson Imaging. 1999;9:157–162.

    Article  CAS  PubMed  Google Scholar 

  95. Margulis AR, Fisher MR. Present clinical status of magnetic resonance imaging. Magn Reson Med. 1985;2:309–327.

    Article  CAS  PubMed  Google Scholar 

  96. Chezmar JL, Nelson RC, Small WC, Bernardino ME. Magnetic resonance imaging of the pancreas with gadolinium-DTPA. Abdom Imaging. 1991;16:139–142.

    CAS  Google Scholar 

  97. Semelka RC, Ascher SM. MR imaging of the pancreas. Radiology. 1993;188:593–602. https://doi.org/10.1148/radiology.188.3.8351317.

    Article  CAS  PubMed  Google Scholar 

  98. Miller FH, Rini NJ, Keppke AL. MRI of adenocarcinoma of the pancreas. Am J Roentgenol. 2006;187:W365–W374.

    Article  Google Scholar 

  99. Ichikawa T, Sou H, Araki T, et al. Duct-penetrating sign at MRCP: Usefulness for differentiating inflammatory pancreatic mass from pancreatic carcinomas. Radiology. 2001;221:107–116.

    Article  CAS  PubMed  Google Scholar 

  100. Lemke A, Laun FB, Klauss M, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol. 2009;44:769–775. https://doi.org/10.1097/RLI.0b013e3181b62271.

    Article  PubMed  Google Scholar 

  101. Cho SG, Lee DH, Lee KY, et al. Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2005;29:163–169.

    Article  PubMed  Google Scholar 

  102. Fidler J. MR imaging of the small bowel. Radiol Clin North Am. 2007;45:317–331.

    Article  PubMed  Google Scholar 

  103. Fidler JL, Guimaraes L, Einstein DM. MR imaging of the small bowel. Radiographics. 2009;29:1811–1825.

    Article  PubMed  Google Scholar 

  104. Young BM, Fletcher JG, Booya F, et al. Head-to-head comparison of oral contrast agents for cross-sectional enterography: Small bowel distention, timing, and side effects. J Comput Assist Tomogr. 2008;32:32–38. https://doi.org/10.1097/RCT.0b013e318061961d.

    Article  PubMed  Google Scholar 

  105. Masselli G, Gualdi G. MR imaging of the small bowel. Radiology. 2012;264:333–348.

    Article  PubMed  Google Scholar 

  106. Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26:1621–1636.

    Article  PubMed  Google Scholar 

  107. Wnorowski AM, Guglielmo FF, Mitchell DG. How to perform and interpret cine MR enterography. J Magn Reson Imaging. 2015;42:1180–1189.

    Article  PubMed  Google Scholar 

  108. Grand DJ, Guglielmo FF, Al-Hawary MM. MR enterography in Crohn’s disease: Current consensus on optimal imaging technique and future advances from the SAR crohn’s disease-focused panel. Abdom Imaging. 2015;40:953–964.

    Article  PubMed  Google Scholar 

  109. Lee SS, Kim AY, Yang S, et al. Crohn disease of the small bowel: comparison of CT enterography, MR enterography, and small-bowel follow-through as diagnostic techniques. Radiology. 2009;251:751–761.

    Article  PubMed  Google Scholar 

  110. Samuel S, Bruining DH, Loftus EV, et al. Endoscopic skipping of the distal terminal ileum in crohn’s disease can lead to negative results from ileocolonoscopy. Clin Gastroenterol Hepatol. 2012;10:1253–1259.

    Article  PubMed  Google Scholar 

  111. Fletcher JG, Fidler JL, Bruining DH, Huprich JE. New concepts in intestinal imaging for inflammatory bowel diseases. Gastroenterology. 2011;140:e7.

    Article  Google Scholar 

  112. Siddiki HA, Fidler JL, Fletcher JG, et al. Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel crohn’s disease. Am J Roentgenol. 2009;193:113–121.

    Article  Google Scholar 

  113. Bruining DH, Siddiki HA, Fletcher JG, Tremaine WJ, Sandborn WJ, Loftus EV. Prevalence of penetrating disease and extraintestinal manifestations of crohn’s disease detected with CT enterography. Inflamm Bowel Dis. 2008;14:1701–1706.

    Article  PubMed  Google Scholar 

  114. Taylor FG, Swift RI, Blomqvist L, Brown G. A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. Am J Roentgenol. 2008;191:1827–1835.

    Article  Google Scholar 

  115. Patel UB, Taylor F, Blomqvist L, et al. Magnetic resonance imaging–detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol. 2011;29:3753–3760.

    Article  PubMed  Google Scholar 

  116. de Miguel Criado J, del Salto LG, Rivas PF, et al. MR imaging evaluation of perianal fistulas: spectrum of imaging features. Radiographics. 2011;32:175–194.

    Google Scholar 

  117. Morris J, Spencer JA, Ambrose NS. MR imaging classification of perianal fistulas and its implications for patient management. Radiographics. 2000;20:623–635.

    Article  CAS  PubMed  Google Scholar 

  118. Gecse KB, Bemelman W, Kamm MA, et al. A global consensus on the classification, diagnosis and multidisciplinary treatment of perianal fistulising crohn’s disease. Gut. 2014;63:1381–1392. https://doi.org/10.1136/gutjnl-2013-306709.

    Article  PubMed  Google Scholar 

  119. Pedrosa I, Lafornara M, Pandharipande PV, Goldsmith JD, Rofsky NM. Pregnant patients suspected of having acute appendicitis: effect of MR imaging on negative laparotomy rate and appendiceal perforation rate. Radiology. 2009;250:749–757.

    Article  PubMed  Google Scholar 

  120. Pedrosa I, Levine D, Eyvazzadeh AD, Siewert B, Ngo L, Rofsky NM. MR imaging evaluation of acute appendicitis in pregnancy. Radiology. 2006;238:891–899.

    Article  PubMed  Google Scholar 

  121. Abrigo JM, Shen J, Wong VW, et al. Nonalcoholic fatty liver disease: spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study. J Hepatol. 2014;60:809–815.

    Article  CAS  PubMed  Google Scholar 

  122. Traussnigg S, Kienbacher C, Gajdošík M, et al. P1045: ultra-high-field MR-spectroscopy in NAFLD as non-invasive in-vivo tool for monitoring changes in fat and energy metabolism with potential identification of NASH and advanced fibrosis by saturation transfer technique. J Hepatol. 2015;62:S739–S740.

    Article  Google Scholar 

  123. Dezortova M, Taimr P, Skoch A, Spicak J, Hajek M. Etiology and functional status of liver cirrhosis by 31P MR spectroscopy. World J Gastroenterol. 2005;11:6926–6931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Purvis LA, Clarke WT, Valkovič L, et al. Phosphodiester content measured in human liver by in vivo 31P MR spectroscopy at 7 tesla. Magn Reson Med. 2017;78:2095–2105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Roth.

Ethics declarations

Conflict of Interest

Dr. Roth is an author for Elseiver and Dr. Halegoua-De Marzio receives grant/research support from Bristol-Myers Squibb, Conatus, Galectin, Genfit, Gilead, and Intercept and has been a consultant for Alexion, Gilead, and Intercept.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, C.G., Marzio, D.HD. & Guglielmo, F.F. Contributions of Magnetic Resonance Imaging to Gastroenterological Practice: MRIs for GIs. Dig Dis Sci 63, 1102–1122 (2018). https://doi.org/10.1007/s10620-018-4991-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-4991-x

Keywords

Navigation