Skip to main content
Log in

Autophagy Strengthens Intestinal Mucosal Barrier by Attenuating Oxidative Stress in Severe Acute Pancreatitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Intestinal mucosal barrier dysfunction can be caused by severe acute pancreatitis (SAP). It is normally associated with changes to mucosal autophagy and oxidative stress.

Objective

The aim of this study was to investigate the correlation between autophagy and oxidative stress on the intestinal mucosal barrier of SAP rat model.

Methods

SAP was induced by retrograde injection of sodium taurocholate (5%) into the biliopancreatic duct. Bacterial translocation (BT) was detected by 16S rDNA sequencing analysis. Morphological alterations in the pancreas and gut were determined by hematoxylin–eosin staining. Oxidative stress status was determined by measuring the level of intestinal malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Western blot, RT-PCR, and immunofluorescent staining were preformed to analyze the expression of tight junction and autophagy proteins.

Results

According to the sequencing analysis, rats in SAP group were divided into BT (+) group (n = 9) and BT (−) group (n = 8). Pancreatic and intestinal injuries in SAP group were significantly higher than sham operation group. The content of MDA was clearly elevated, and SOD as well as GPx activities were decreased in BT (+) group as compared with BT (−) group. The expression of LC3II and Beclin1 in BT (−) group was higher than that observed in BT (+). In contrast, BT (+) group had a higher level of claudin-2 and a lower level of zonula occluden-1, occludin, and claudin-1.

Conclusion

These results suggest that activated autophagy may attenuate intestinal mucosal barrier dysfunction by preventing and reducing the oxidative stress in SAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh VK, Wu BU, Bollen TL, et al. Early systemic inflammatory response syndrome is associated with severe acute pancreatitis. Clin Gastroenterol Hepatol. 2009;7:1247–1251.

    Article  PubMed  Google Scholar 

  2. Pinzone MR, Celesia BM. Microbial translocation in chronic liver diseases. Int J Microbiol. 2012;2012:694629.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee J, Mo JH, Katakura K, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signaling in intestinal epithelial cells. Nat Cell Biol. 2007;8:1327–1336.

    Article  Google Scholar 

  4. Jiang Y, Lin J, Zhang D, et al. Bacterial translocation contributes to cachexia and its possible pathway in patients with colon cancer. J Clin Gastroenterol. 2014;48:131.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Li C, Jiang Y, et al. Effect of ceramide-1-phosphate transfer protein on intestinal bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2016;41:86.

    Article  CAS  PubMed  Google Scholar 

  6. Marchiando AM, Graham WV, Turner JR. Epithelial barriers in homeostasis and disease. Annu Rev Pathol. 2010;5:119.

    Article  CAS  PubMed  Google Scholar 

  7. Umeda K, Ikenouchi J, Katahira-Tayama S, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 2006;126:741–754.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Y, Guo C, Zhang D, Zhang J, Wang X, Geng C. The altered tight junctions: an important gateway of bacterial translocation in cachexia patients with advanced gastric cancer. J Interferon Cytokine Res. 2014;34:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog. 2016;8:1–11.

    Article  CAS  Google Scholar 

  10. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue J, Nishiumi S, Fujishima Y, et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch Biochem Biophys. 2012;521:95–101.

    Article  CAS  PubMed  Google Scholar 

  12. Randall-Demllo S, Chieppa M, Eri R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol. 2013;4:301.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nighot PK, Hu CA, Ma TY. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem. 2015;290:7234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol. 2014;101–102:80.

    Article  PubMed  Google Scholar 

  15. Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen. species. Antioxid Redox Signal. 2011;14:2215–2231.

    Article  CAS  PubMed  Google Scholar 

  16. Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 2008;4:457.

    Article  CAS  PubMed  Google Scholar 

  17. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen W, Zheng H, Jiang Y, et al. Effect of intestinal epithelial autophagy on bacterial translocation in severe acute pancreatitis. Clin Res Hepatol Gastroenterol. 2017;41:703–710.

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chiu CJ, Mcardle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478.

    Article  CAS  PubMed  Google Scholar 

  22. Ren W, Liu S, Chen S, et al. Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids. 2013;45:947.

    Article  CAS  PubMed  Google Scholar 

  23. Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis. 2009;24:1149–1156.

    Article  PubMed  Google Scholar 

  24. Liang HY, Chen T, Wang T, Huang Z, Yan HT, Tang LJ. Time course of intestinal barrier function injury in a sodium taurocholate-induced severe acute pancreatitis in rat model. J Dig Dis. 2014;15:386–393.

    Article  CAS  PubMed  Google Scholar 

  25. Cacopardo B, Pinzone, Berretta S, et al. Localized and systemic bacterial infections in necrotizing pancreatitis submitted to surgical necrosectomy or percutaneous drainage of necrotic secretions. BMC Surg. 2013;13:1–4.

    Article  Google Scholar 

  26. Gosiewski T, Flis A, Sroka A, et al. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol. 2014;14:313.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu LL, Chiu HD, Peng WH, et al. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med. 2011;39:2087–2098.

    Article  CAS  PubMed  Google Scholar 

  28. Meriläinen S, Mäkelä J, Koivukangas V, et al. Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis. Hepatogastroenterology. 2012;59:599.

    PubMed  Google Scholar 

  29. Deng WS, Zhang J, Lu H, et al. Arpin contributes to bacterial translocation and development of severe acute pancreatitis. World J Gastroenterol. 2015;21:4293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou H, Gao J, Wu W, et al. Octreotide ameliorates intestinal dysmotility by interstitial cells of Cajal protection in a rat acute necrotizing pancreatitis model. Pancreas. 2011;40:1226.

    Article  CAS  PubMed  Google Scholar 

  31. Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5:685.

    Article  CAS  PubMed  Google Scholar 

  32. Kurihara Y, Kanki T, Aoki Y, et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem. 2012;287:3265–3272.

    Article  CAS  PubMed  Google Scholar 

  33. Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171:1917–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang Y, Li J, Li F, et al. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med. 2015;89:944.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu H, Foretz M, Xie Z, et al. PRKAA1/AMPKα1 is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy. 2014;10:1522–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Kong X, Kang J, et al. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci. 2009;110:376.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, Nos. 81270448 and 81470890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianliang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Jiang, Y., Sun, Z. et al. Autophagy Strengthens Intestinal Mucosal Barrier by Attenuating Oxidative Stress in Severe Acute Pancreatitis. Dig Dis Sci 63, 910–919 (2018). https://doi.org/10.1007/s10620-018-4962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-4962-2

Keywords

Navigation