Digestive Diseases and Sciences

, Volume 63, Issue 4, pp 934–944 | Cite as

Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC

  • Julia Esperanza Torres-Mena
  • Karla Noemí Salazar-Villegas
  • Ricardo Sánchez-Rodríguez
  • Belém López-Gabiño
  • Luis Del Pozo-Yauner
  • Jaime Arellanes-Robledo
  • Saúl Villa-Treviño
  • María Angélica Gutiérrez-Nava
  • Julio Isael Pérez-CarreónEmail author
Original Article



The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC.


To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis.


Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4–17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat.


The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues.


Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.


Gene expression profile Liver cancer Biomarkers Antioxidant response Tumor heterogeneity 



JETM, KNSV, and RSR contributed equally to this work. Authors are grateful to Armando Cruz-Rangel and José Luis Cruz-Colín for their technical assistance. This research was supported by CONACYT-Mexico, Grant: CB-182450 to JIPC.


This study was funded by CONACYT-Mexico (Grant Number CB-182450).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed, and details are included in the approved protocol:# 0001-02.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee at the Hospital General “Dr. Eduardo Liceaga” and with the 1964 Helsinki Declaration and later amendments.

Supplementary material

10620_2018_4943_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
10620_2018_4943_MOESM2_ESM.tiff (3.5 mb)
Independent association between AKR7A3 expression and HCC differentiation grade. Representative HCC images show indistinct correlation of AKR7A3 presence and HCC differentiation grade. Image magnification is 200X, and the scale bar represents 100 µm.


  1. 1.
    Rombouts K, Carloni V. The fibrotic microenvironment as a heterogeneity facet of hepatocellular carcinoma. Fibrogenes Tissue Repair. 2013;6:17.CrossRefGoogle Scholar
  2. 2.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–627.CrossRefPubMedGoogle Scholar
  3. 3.
    Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69:7385–7392.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Friemel J, Rechsteiner M, Frick L, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21:1951–1961.CrossRefPubMedGoogle Scholar
  5. 5.
    Makowska Z, Boldanova T, Adametz D, et al. Gene expression analysis of biopsy samples reveals critical limitations of transcriptome-based molecular classifications of hepatocellular carcinoma. J Pathol Clin Res. 2016;2:80–92.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    French SW. Molecular events in hepatic preneoplasia: a review. Exp Mol Pathol. 2010;88:219–224.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Farber DSaE. New principle for the analysis of chemical carcinogenesis. Nature. 1976;263:701–703.CrossRefGoogle Scholar
  8. 8.
    Schiffer E, Housset C, Cacheux W, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology. 2005;41:307–314.CrossRefPubMedGoogle Scholar
  9. 9.
    Marche-Cova A, Fattel-Fazenda S, Rojas-Ochoa A, et al. Follow-up of GST-P during hepatocarcinogenesis with DEN-2AAF in F344 rats. Arch Med Res. 1995;26 Spec No:S169–S173.PubMedGoogle Scholar
  10. 10.
    Sanchez-Rodriguez R, Torres-Mena JE, De-la-Luz-Cruz M, et al. Increased expression of prostaglandin reductase 1 in hepatocellular carcinomas from clinical cases and experimental tumors in rats. Int J Biochem Cell Biol. 2014;53:186–194.CrossRefPubMedGoogle Scholar
  11. 11.
    Jez JM, Flynn TG, Penning TM. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997;54:639–647.CrossRefPubMedGoogle Scholar
  12. 12.
    Endo S, Matsunaga T, Soda M, et al. Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-phenylanthranilic acids and glycyrrhetic acid. Biol Pharm Bull. 2010;33:886–890.CrossRefPubMedGoogle Scholar
  13. 13.
    Tammali R, Reddy AB, Srivastava SK, Ramana KV. Inhibition of aldose reductase prevents angiogenesis in vitro and in vivo. Angiogenesis. 2011;14:209–221.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ruiz FX, Porte S, Pares X, Farres J. Biological role of aldo-keto reductases in retinoic acid biosynthesis and signaling. Front Pharmacol. 2012;3:58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pastor MD, Nogal A, Molina-Pinelo S, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteom. 2013;89:227–237.CrossRefGoogle Scholar
  16. 16.
    Azzarello JT, Lin HK, Gherezghiher A, et al. Expression of AKR1C3 in renal cell carcinoma, papillary urothelial carcinoma, and Wilms’ tumor. Int J Clin Exp Pathol. 2009;3:147–155.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Penning TM, Byrns MC. Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci. 2009;1155:33–42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Matkowskyj KA, Bai H, Liao J, et al. Aldoketoreductase family 1B10 (AKR1B10) as a biomarker to distinguish hepatocellular carcinoma from benign liver lesions. Hum Pathol. 2014;45:834–843.CrossRefPubMedGoogle Scholar
  19. 19.
    Chow RKK, Tsz-Kwan Sin S, Liu M, et al. AKR7A3 suppresses tumorigenicity and chemoresistance in hepatocellular carcinoma through attenuation of ERK, c-Jun and NF-κB signaling pathways. Oncotarget. 2017;8:83469–83479.CrossRefPubMedGoogle Scholar
  20. 20.
    Torres Mena JE, Sanchez Rodriguez R, Quintanar Jurado V, et al. Laser capture microdissection after gamma-glutamyl transferase histochemistry: an optimization for gene expression analysis. Anal Biochem. 2014;447:126–132.CrossRefPubMedGoogle Scholar
  21. 21.
    Diaz-Barriga F, Carrizales L, Yanez L, et al. Interaction of cadmium with actin microfilaments in vitro. Toxicol In Vitro. 1989;3:277–284.CrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–13295.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thomas-Chollier M, Sand O, Turatsinze JV, et al. RSAT: regulatory sequence analysis tools. Nucleic Acids Res. 2008;36:W119–W127.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Joshi A, Rajput S, Wang C, et al. Murine aldo-keto reductase family 1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10. Biol Chem. 2010;391:1371–1378.CrossRefPubMedGoogle Scholar
  25. 25.
    Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13:1713–1748.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang L, Zhang J, Zhang S, et al. Quantitative evaluation of aldo-keto reductase expression in hepatocellular carcinoma (HCC) cell lines. Genom Proteom Bioinform. 2013;11:230–240.CrossRefGoogle Scholar
  27. 27.
    Heringlake S, Hofdmann M, Fiebeler A, et al. Identification and expression analysis of the aldo-ketoreductase1-B10 gene in primary malignant liver tumours. J Hepatol. 2010;52:220–227.CrossRefPubMedGoogle Scholar
  28. 28.
    Ha SY, Song DH, Lee JJ, et al. High expression of aldo-keto reductase 1B10 is an independent predictor of favorable prognosis in patients with hepatocellular carcinoma. Gut Liver. 2014;8:648–654.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schmitz KJ, Sotiropoulos GC, Baba HA, et al. AKR1B10 expression is associated with less aggressive hepatocellular carcinoma: a clinicopathological study of 168 cases. Liver Int. 2011;31:810–816.CrossRefPubMedGoogle Scholar
  30. 30.
    Sonohara F, Inokawa Y, Hishida M, et al. Prognostic significance of AKR1B10 gene expression in hepatocellular carcinoma and surrounding non-tumorous liver tissue. Oncol Lett. 2016;12:4821–4828.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Semmo N, Weber T, Idle JR, Beyoglu D. Metabolomics reveals that aldose reductase activity due to AKR1B10 is upregulated in hepatitis C virus infection. J Viral Hepat. 2015;22:617–624.CrossRefPubMedGoogle Scholar
  32. 32.
    Albrethsen J, Miller LM, Novikoff PM, Angeletti RH. Gel-based proteomics of liver cancer progression in rat. Biochim Biophys Acta. 2011;1814:1367–1376.CrossRefPubMedGoogle Scholar
  33. 33.
    Roebuck BD, Johnson DN, Sutter CH, et al. Transgenic expression of aflatoxin aldehyde reductase (AKR7A1) modulates aflatoxin B1 metabolism but not hepatic carcinogenesis in the rat. Toxicol Sci. 2009;109:41–49.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ahmed MM, Wang T, Luo Y, et al. Aldo-keto reductase-7A protects liver cells and tissues from acetaminophen-induced oxidative stress and hepatotoxicity. Hepatology. 2011;54:1322–1332.CrossRefPubMedGoogle Scholar
  35. 35.
    Nishinaka T, Miura T, Okumura M, et al. Regulation of aldo-keto reductase AKR1B10 gene expression: involvement of transcription factor Nrf2. Chem Biol Interact. 2011;191:185–191.CrossRefPubMedGoogle Scholar
  36. 36.
    MacLeod AK, Acosta-Jimenez L, Coates PJ, et al. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br J Cancer. 2016;115:1530–1539.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang H, Liu H, Dickinson DA, et al. gamma-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells. Free Radic Biol Med. 2006;40:1281–1292.CrossRefPubMedGoogle Scholar
  38. 38.
    Lin AH, Chen HW, Liu CT, et al. Activation of Nrf2 is required for up-regulation of the pi class of glutathione S-transferase in rat primary hepatocytes with l-methionine starvation. J Agric Food Chem. 2012;60:6537–6545.CrossRefPubMedGoogle Scholar
  39. 39.
    Krajka-Kuzniak V, Paluszczak J, Szaefer H, Baer-Dubowska W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr. 2013;110:2138–2149.CrossRefPubMedGoogle Scholar
  40. 40.
    Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor heterogeneity in hepatocellular carcinoma: facing the challenges. Liver Cancer. 2016;5:128–138.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Walther Z, Jain D. Molecular pathology of hepatic neoplasms: classification and clinical significance. Pathol Res Int. 2011;2011:403929.CrossRefGoogle Scholar
  42. 42.
    Shafizadeh N, Ferrell LD, Kakar S. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod Pathol. 2008;21:1011–1018.CrossRefPubMedGoogle Scholar
  43. 43.
    Diez-Dacal B, Gayarre J, Gharbi S, et al. Identification of aldo-keto reductase AKR1B10 as a selective target for modification and inhibition by prostaglandin A(1): implications for antitumoral activity. Cancer Res. 2011;71:4161–4171.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu J, Wen G, Cao D. Aldo-keto reductase family 1 member B1 inhibitors: old drugs with new perspectives. Recent Pat Anticancer Drug Discov. 2009;4:246–253.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julia Esperanza Torres-Mena
    • 1
    • 2
  • Karla Noemí Salazar-Villegas
    • 1
  • Ricardo Sánchez-Rodríguez
    • 1
  • Belém López-Gabiño
    • 1
  • Luis Del Pozo-Yauner
    • 1
  • Jaime Arellanes-Robledo
    • 4
  • Saúl Villa-Treviño
    • 2
  • María Angélica Gutiérrez-Nava
    • 3
  • Julio Isael Pérez-Carreón
    • 1
    Email author
  1. 1.Instituto Nacional de Medicina GenómicaMexicoMexico
  2. 2.Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPNMexicoMexico
  3. 3.Laboratorio de Ecología Microbiana, Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana XochimilcoMexicoMexico
  4. 4.Catedrático CONACYTInstituto Nacional de Medicina GenómicaMexicoMexico

Personalised recommendations