Skip to main content

Advertisement

Log in

Gastrointestinal Tract Pathology in a BALB/c Niemann–Pick Disease Type C1 Null Mouse Model

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Niemann–Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1.

Methods

We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1/) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease.

Results

Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup.

Conclusions

Macrophage dysfunction in the BALB/c Npc1/ mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NPC1:

Niemann–Pick disease, type C1

IBD:

Inflammatory bowel disease

References

  1. Vanier MT. Niemann–Pick disease type C. Orphanet J Rare Dis. 2010;5:16. https://doi.org/10.1186/1750-1172-5-16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stampfer M, Theiss S, Amraoui Y, et al. Niemann–Pick disease type C clinical database: cognitive and coordination deficits are early disease indicators. Orphanet J Rare Dis. 2013;8:35. https://doi.org/10.1186/1750-1172-8-35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Subramanian K, Balch WE. NPC1/NPC2 function as a tag team duo to mobilize cholesterol. Proc Natl Acad Sci USA. 2008;105:15223–15224. https://doi.org/10.1073/pnas.0808256105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yanjanin NM, Velez JI, Gropman A, et al. Linear clinical progression, independent of age of onset, in Niemann–Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:132–140. https://doi.org/10.1002/ajmg.b.30969.

    PubMed  PubMed Central  Google Scholar 

  5. Patterson MC. A riddle wrapped in a mystery: understanding Niemann–Pick disease, type C. Neurologist. 2003;9:301–310. https://doi.org/10.1097/01.nrl.0000094627.78754.5b.

    Article  PubMed  Google Scholar 

  6. Imrie J, Heptinstall L, Knight S, Strong K. Observational cohort study of the natural history of Niemann–Pick disease type C in the UK: a 5-year update from the UK clinical database. BMC Neurol. 2015;15:257. https://doi.org/10.1186/s12883-015-0511-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cologna SM, Cluzeau CV, Yanjanin NM, et al. Human and mouse neuroinflammation markers in Niemann–Pick disease, type C1. J Inherit Metab Dis. 2014;37:83–92. https://doi.org/10.1007/s10545-013-9610-6.

    Article  CAS  PubMed  Google Scholar 

  8. Bradbury A, Bagel J, Sampson M, et al. Cerebrospinal fluid calbindin D concentration as a biomarker of cerebellar disease progression in Niemann–Pick type C1 disease. J Pharmacol Exp Ther. 2016;358:254–261. https://doi.org/10.1124/jpet.116.232975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alam MS, Getz M, Yi S, Kurkewich J, Safeukui I, Haldar K. Plasma signature of neurological disease in the monogenetic disorder Niemann–Pick type C. J Biol Chem. 2014;289:8051–8066. https://doi.org/10.1074/jbc.M113.526392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porter FD, Scherrer DE, Lanier MH, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann–Pick C1 disease. Sci Transl Med. 2010;2:56ra81. https://doi.org/10.1126/scitranslmed.3001417.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cluzeau CV, Watkins-Chow DE, Fu R, et al. Microarray expression analysis and identification of serum biomarkers for Niemann–Pick disease, type C1. Hum Mol Genet. 2012;21:3632–3646. https://doi.org/10.1093/hmg/dds193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roszell BR, Tao J-Q, Yu KJ, et al. Pulmonary abnormalities in animal models due to Niemann–Pick type C1 (NPC1) or C2 (NPC2) disease. PLoS ONE. 2013;8:e67084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deutsch G, Muralidhar A, Le E, Borbon IA, Erickson RP. Extensive macrophage accumulation in young and old Niemann–Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis. Gene. 2016;578:242–250. https://doi.org/10.1016/j.gene.2015.12.033.

    Article  CAS  PubMed  Google Scholar 

  14. Peake KB, Hayashi H, Campenot R, Vance D, Vance J. Inflammation in the Niemann–Pick type-C brain. FASEB J. 2007;21:486.1.

    Google Scholar 

  15. Alam MS, Getz M, Safeukui I, et al. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder. PLoS ONE. 2012;7:e48273. https://doi.org/10.1371/journal.pone.0048273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapur R, Donohue C, Jelinek D, Erickson RP. Amelioration of enteric neuropathology in a mouse model of Niemann–Pick C by Npc1 expression in enteric glia. J Neurosci Res. 2009;87:2994–3001. https://doi.org/10.1002/jnr.22126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jolliffe DS, Sarkany I. Niemann–Pick type III and Crohn’s disease. J R Soc Med. 1983;76:307–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peneau A, Savoye G, Turck D, et al. Mortality and cancer in pediatric-onset inflammatory bowel disease: a population-based study. Am J Gastroenterol. 2013;108:1647–1653. https://doi.org/10.1038/ajg.2013.242.

    Article  PubMed  Google Scholar 

  19. Steven L, Driver C. Niemann–pick disease type C and Crohn disease. Scott Med J. 2005;50:80–81.

    Article  CAS  PubMed  Google Scholar 

  20. Dickson I. Crohn’s disease: impaired bacterial clearance in IBD. Nat Rev Gastroenterol Hepatol. 2016;. https://doi.org/10.1038/nrgastro.2016.55.

    Google Scholar 

  21. Schwerd T, Pandey S, Yang HT, et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann–Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut. 2016;. https://doi.org/10.1136/gutjnl-2015-310382.

    PubMed  PubMed Central  Google Scholar 

  22. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2016;. https://doi.org/10.1016/S0140-6736(16)31711-1.

    Google Scholar 

  23. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–1605.

    Article  PubMed  Google Scholar 

  24. Agouridis AP, Elisaf M, Milionis HJ. An overview of lipid abnormalities in patients with inflammatory bowel disease. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2011;24:181–187.

    Google Scholar 

  25. Sarkar S, Carroll B, Buganim Y, et al. Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep. 2013;5:1302–1315. https://doi.org/10.1016/j.celrep.2013.10.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki M, Sugimoto Y, Ohsaki Y, et al. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann–Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain. J Neurosci. 2007;27:1879–1891.

    Article  CAS  PubMed  Google Scholar 

  27. Testro AG, Visvanathan K. Toll-like receptors and their role in gastrointestinal disease. J Gastroenterol Hepatol. 2009;24:943–954. https://doi.org/10.1111/j.1440-1746.2009.05854.x.

    Article  CAS  PubMed  Google Scholar 

  28. Picache JA, Cologna SM, Yergey AL, Picard P, Chen C, Burkert KR, et al., eds. A label-free, mass spectrometry-based high throughput candidate drug screening assay: application to Smith–Lemli–Opitz syndrome. In: ASMS Conference; 2016; San Antonio.

  29. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–5072. https://doi.org/10.1128/AEM.03006-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. https://doi.org/10.1038/nmeth.f.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 2010;. https://doi.org/10.3791/1488.

    Google Scholar 

  32. Ravindran R, Loebbermann J, Nakaya HI, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature. 2016;531:523–527. https://doi.org/10.1038/nature17186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zavros Y, Eaton KA, Kang W, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005;24:2354–2366. https://doi.org/10.1038/sj.onc.1208407.

    Article  CAS  PubMed  Google Scholar 

  34. Erben U, Loddenkemper C, Doerfel K, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7:4557–4576.

    PubMed  PubMed Central  Google Scholar 

  35. Pizarro TT, Arseneau KO, Bamias G, Cominelli F. Mouse models for the study of Crohn’s disease. Trends Mol Med. 2003;9:218–222.

    Article  CAS  PubMed  Google Scholar 

  36. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104:Unit 15 25. https://doi.org/10.1002/0471142735.im1525s104.

  37. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139:1630–1641, 41 e1–2. https://doi.org/10.1053/j.gastro.2010.07.006.

  38. Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology. 2011;140:1738–1747. https://doi.org/10.1053/j.gastro.2011.02.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarkar S, Maetzel D, Korolchuk VI, Jaenisch R. Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann–Pick type C1 disease. Autophagy. 2014;10:1137–1140. https://doi.org/10.4161/auto.28623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong CY, Sun WW, Ma Y, et al. Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci Rep. 2015;5:10512. https://doi.org/10.1038/srep10512.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martinez I, Brown AW, Walter J. Does host cholesterol metabolism impact the gut microbiota and why does it matter? Future Microbiol. 2013;8:571–573. https://doi.org/10.2217/fmb.13.24.

    Article  CAS  PubMed  Google Scholar 

  42. Gerard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;3:14–24. https://doi.org/10.3390/pathogens3010014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–392. https://doi.org/10.1016/j.chom.2014.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dawson RM. The toxicology of microcystins. Toxicon. 1998;36:953–962.

    Article  CAS  PubMed  Google Scholar 

  45. Parra J, Klein AD, Castro J, et al. Npc1 deficiency in the C57BL/6J genetic background enhances Niemann–Pick disease type C spleen pathology. Biochem Biophys Res Commun. 2011;413:400–406. https://doi.org/10.1016/j.bbrc.2011.08.096.

    Article  CAS  PubMed  Google Scholar 

  46. Alzoghaibi MA. Neutrophil expression and infiltration into Crohn’s intestine. Saudi J Gastroenterol. 2005;11:63–72.

    Article  PubMed  Google Scholar 

  47. Andus T, Gross V. Etiology and pathophysiology of inflammatory bowel disease–environmental factors. Hepato-gastroenterology. 2000;47:29–43.

    CAS  PubMed  Google Scholar 

  48. Ardizzone S, Bollani S, Manzionna G, Bianchi Porro G. Inflammatory bowel disease approaching the 3rd millennium: pathogenesis and therapeutic implications? Eur J Gastroenterol Hepatol. 1999;11:27–32.

    Article  CAS  PubMed  Google Scholar 

  49. Baker PI, Love DR, Ferguson LR. Role of gut microbiota in Crohn’s disease. Expert Rev Gastroenterol Hepatol. 2009;3:535–546. https://doi.org/10.1586/egh.09.47.

    Article  CAS  PubMed  Google Scholar 

  50. Kiesler P, Fuss IJ, Strober W. Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 2015;1:154–170. https://doi.org/10.1016/j.jcmgh.2015.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maue RA, Burgess RW, Wang B, et al. A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet. 2012;21:730–750. https://doi.org/10.1093/hmg/ddr505.

    Article  CAS  PubMed  Google Scholar 

  52. Praggastis M, Tortelli B, Zhang J, et al. A murine Niemann–Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35:8091–8106. https://doi.org/10.1523/JNEUROSCI.4173-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaakoush NO, Mitchell HM, Man SM. Role of emerging Campylobacter species in inflammatory bowel diseases. Inflamm Bowel Dis. 2014;20:2189–2197. https://doi.org/10.1097/MIB.0000000000000074.

    Article  PubMed  Google Scholar 

  54. Alvarez-Arellano L, Maldonado-Bernal C. Helicobacter pylori and neurological diseases: married by the laws of inflammation. World J Gastrointest Pathophysiol. 2014;5:400–404. https://doi.org/10.4291/wjgp.v5.i4.400.

    Article  PubMed  PubMed Central  Google Scholar 

  55. D’Elios MM, Czinn SJ. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter. 2014;19 Suppl 1:19–26. https://doi.org/10.1111/hel.12156.

    Article  PubMed  Google Scholar 

  56. Mahendran V, Riordan SM, Grimm MC, et al. Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS ONE. 2011;6:e25417. https://doi.org/10.1371/journal.pone.0025417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jimenez-Soto LF, Rohrer S, Jain U, Ertl C, Sewald X, Haas R. Effects of cholesterol on Helicobacter pylori growth and virulence properties in vitro. Helicobacter. 2012;17:133–139. https://doi.org/10.1111/j.1523-5378.2011.00926.x.

    Article  CAS  PubMed  Google Scholar 

  58. McGee DJ, George AE, Trainor EA, Horton KE, Hildebrandt E, Testerman TL. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother. 2011;55:2897–2904. https://doi.org/10.1128/AAC.00016-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones-Hall YL, Kozik A, Nakatsu C. Ablation of tumor necrosis factor is associated with decreased inflammation and alterations of the microbiota in a mouse model of inflammatory bowel disease. PLoS ONE. 2015;10:e0119441. https://doi.org/10.1371/journal.pone.0119441.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–498. https://doi.org/10.1016/j.cell.2009.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Laetitia Dorso and Dr. Jerome Abadie (Oniris, Atlampole-La Chanterie, Nante, France) for the pathological analysis. We thank the NICHD Molecular genomic core for the 16S sequencing and analysis of the results.

Funding

This work was supported by the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. C.A.W. is an NIH/Oxford Scholar.

Author information

Authors and Affiliations

Authors

Contributions

AC and MM performed and analyzed the experiments. JAP, FN, AS, KM, NYF, CC, W-CT, KB, CS, CAW, and NXC provided experimental and technical support. JRI performed bioinformatics analysis. RB organized the pathological analysis and provided experimental advice. FDP provided experimental input. AC, MM, NXC, FN, RB, and FDP participated in the writing of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Forbes D. Porter.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cougnoux, A., Movassaghi, M., Picache, J.A. et al. Gastrointestinal Tract Pathology in a BALB/c Niemann–Pick Disease Type C1 Null Mouse Model. Dig Dis Sci 63, 870–880 (2018). https://doi.org/10.1007/s10620-018-4914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-4914-x

Keywords

Navigation