Digestive Diseases and Sciences

, Volume 63, Issue 4, pp 881–889 | Cite as

Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria

  • Eiichiro Yasutomi
  • Namiko HoshiEmail author
  • Soichiro Adachi
  • Takafumi Otsuka
  • Lingling Kong
  • Yuna Ku
  • Haruka Yamairi
  • Jun Inoue
  • Tsukasa Ishida
  • Daisuke Watanabe
  • Makoto Ooi
  • Masaru Yoshida
  • Tomoya Tsukimi
  • Shinji Fukuda
  • Takeshi Azuma
Original Article


Background and Aims

Proton pump inhibitors (PPIs) are among the most frequently prescribed medications. Side effects including an increased risk of intestinal infections have been reported. It is assumed that PPIs can increase susceptibility to enteropathogens; however, the underlying mechanisms are unknown. Here in this study, we explored whether Lansoprazole (Laz), one of the PPIs, increases the susceptibility to enteropathogens, and further investigated the mechanism of it.


Mice were administered Laz intraperitoneally once daily and orally infected with Citrobacter rodentium (C. rodentium). The establishment of intestinal infection was assessed by histology and inflammatory cytokine expression levels measured by quantitative PCR. To test whether Laz changes the intestinal environment to influence the susceptibility, intestinal pH, microbiota, metabolites and immune cell distributions were evaluated via pH measurement, 16S rRNA gene sequencing, metabolome, and flow cytometry analyses after Laz administration.


Colitis was induced with less C. rodentium in Laz-treated mice as compared with the controls. We found that increased numbers of C. rodentium could reach the cecum following Laz administration. Laz increased pH in the stomach but not in the intestines. It induced dysbiosis and changed the metabolite content of the small intestine. However, these changes did not lead to alterations of immune cell distribution.


Laz raised susceptibility to C. rodentium as increased numbers of the pathogen reach the site of infection. Our results suggest that it was due to increased stomach pH which allowed more peroral enteropathogens to pass the stomach, but not because of changes of intestinal environment.


Proton pump inhibitors Gastrointestinal microbiome Immunity Intestinal diseases 



This study was supported in part by grants from the Hyogo Science and Technology Association to N.H.; the Yakult Bio-Science Foundation to N.H.; JST PRESTO (JPMJPR1537) to S.F.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10620_2017_4905_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4565 kb)


  1. 1.
    Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov. 2003;2:132–139.CrossRefPubMedGoogle Scholar
  2. 2.
    Hershcovici T, Fass R. Pharmacological management of GERD: where does it stand now? Trends Pharmacol Sci. 2011;32:258–264.CrossRefPubMedGoogle Scholar
  3. 3.
    Lazarus B, Chen Y, Wilson FP, et al. Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Int Med. 2016;176:238–246.CrossRefGoogle Scholar
  4. 4.
    Wang YF, Chen YT, Luo JC, Chen TJ, Wu JC, Wang SJ. Proton-pump inhibitor use and the risk of first-time ischemic stroke in the general population: a nationwide population-based study. Am J Gastroenterol. 2017;112:1084–1093.CrossRefPubMedGoogle Scholar
  5. 5.
    Schoenfeld AJ, Grady D. Adverse effects associated with proton pump inhibitors. JAMA Intern Med. 2016;176:172–174.CrossRefPubMedGoogle Scholar
  6. 6.
    Gomm W, von Holt K, Thomé F, et al. Association of proton pump inhibitors with risk of dementia: a pharmacoepidemiological claims data analysis. JAMA Neurol. 2016;73:410–416.CrossRefPubMedGoogle Scholar
  7. 7.
    Park T, Cave D, Marshall C. Microscopic colitis: a review of etiology, treatment and refractory disease. World J Gastroenterol. 2015;21:8804–8810.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol.. 2012;107:1011–1019.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu HH, Chen YT, Shih CJ, Lee YT, Kuo SC, Chen TL. Association between recent use of proton pump inhibitors and nontyphoid salmonellosis: a nested case–control study. Clin Infect Dis. 2014;59:1554–1558.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wei L, Ratnayake L, Phillips G, et al. Acid suppression medications and bacterial gastroenteritis: a population-based cohort study. Br J Clin Pharmacol. 2017;83:1298–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Riedl RA, Atkinson SN, Burnett CML, Grobe JL, Kirby JR. The gut microbiome, energy homeostasis, and implications for hypertension. Curr Hypertens Rep. 2017;19:27.CrossRefPubMedGoogle Scholar
  12. 12.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schulz MD, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–512.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–392.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–241.CrossRefPubMedGoogle Scholar
  17. 17.
    Hoshi N, Schenten D, Nish SA, et al. MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice. Nat Commun. 2012;3:1120.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65:749–756.CrossRefPubMedGoogle Scholar
  19. 19.
    Imhann F, Bonder MJ, Vila AV, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65:740–748.CrossRefPubMedGoogle Scholar
  20. 20.
    McKenney PT, Pamer EG. From hype to hope: the gut microbiota in enteric infectious disease. Cell. 2015;163:1326–1332.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev. 2016;30:1589–1597.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–498.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677–689.CrossRefPubMedGoogle Scholar
  24. 24.
    Koh A, Vadder FD, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345.CrossRefPubMedGoogle Scholar
  25. 25.
    Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–573.CrossRefPubMedGoogle Scholar
  27. 27.
    Shah NH, LePendu P, Bauer-Mehren A, et al. Proton pump inhibitor usage and the risk of myocardial infarction in the general population. PLoS ONE. 2015;10:e0124653.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Charlot M, Ahlehoff O, Norgaard ML, et al. Proton-pump inhibitors are associated with increased cardiovascular risk independent of clopidogrel use: a nationwide cohort study. Ann Intern Med. 2010;153:378–386.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghebremariam YT, LePendu P, Lee JC, et al. Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine. Circulation. 2013;128:845–853.CrossRefPubMedGoogle Scholar
  30. 30.
    Collins JW, Keeney KM, Crepin VF, et al. Citrobacter rodentium; infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12:612–623.CrossRefPubMedGoogle Scholar
  31. 31.
    Eckmann L. Animal models of inflammatory bowel disease: lessons from enteric infections. Ann N Y Acad Sci. 2006;1072:28–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Magwedere K, Mukaratirwa S. Evaluation of intestinal pH and osmolality levels in rats (Rattus norvegicus) and chickens (Gallus gallus) experimentally infected with Trichinella zimbabwensis. Int J Appl Res Vet Med. 2008;6:166–174.Google Scholar
  33. 33.
    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.CrossRefPubMedGoogle Scholar
  34. 34.
    Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mishima E, Fukuda S, Shima H, et al. Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol. 2015;26:1787–1794.CrossRefPubMedGoogle Scholar
  36. 36.
    Sugimoto M, Wong DT, Hirayama A, et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6:78–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Forgacs I, Loganayagam A. Overprescribing proton pump inhibitors. BMJ. 2008;336:2–3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–349.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–236.CrossRefPubMedGoogle Scholar
  40. 40.
    Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–341.CrossRefPubMedGoogle Scholar
  41. 41.
    Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD. Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with Citrobacter rodentium. mSphere. 2017;2:e00243-17.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Geddes K, Rubino SJ, Magalhaes JG, et al. Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med. 2011;17:837–844.CrossRefPubMedGoogle Scholar
  43. 43.
    Garon SL, Pavlos RK, White KD, Brown NJ, Stone CA Jr, Phillips EJ. Pharmacogenomics of off-target adverse drug reactions. Br J Clin Pharmacol. 2017;83:1896–1911.CrossRefPubMedGoogle Scholar
  44. 44.
    Hess MW, de Baaij JH, Gommers LM, Hoenderop JG, Bindels RJ. Dietary inulin fibers prevent proton-pump inhibitor (PPI)-induced hypocalcemia in mice. PLoS ONE. 2015;10:e0138881.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kim YG, Sakamoto K, Seo SU, et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science. 2017;356:315–319.CrossRefPubMedGoogle Scholar
  46. 46.
    Tennant SM, Hartland EL, Phumoonna T, et al. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun. 2008;76:639–645.CrossRefPubMedGoogle Scholar
  47. 47.
    Soenen S, Rayner CK, Jones KL, Horowitz M. The ageing gastrointestinal tract. Curr Opin Clin Nutr Metab Care. 2016;19:12–18.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:430–440.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eiichiro Yasutomi
    • 1
  • Namiko Hoshi
    • 1
    Email author
  • Soichiro Adachi
    • 1
  • Takafumi Otsuka
    • 1
  • Lingling Kong
    • 1
  • Yuna Ku
    • 1
  • Haruka Yamairi
    • 1
  • Jun Inoue
    • 1
  • Tsukasa Ishida
    • 1
  • Daisuke Watanabe
    • 1
  • Makoto Ooi
    • 1
  • Masaru Yoshida
    • 1
    • 2
    • 3
  • Tomoya Tsukimi
    • 4
  • Shinji Fukuda
    • 4
    • 5
    • 6
    • 7
  • Takeshi Azuma
    • 1
  1. 1.Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan
  2. 2.Division of Metabolomics Research, Department of Internal RelatedKobe University Graduate School of MedicineKobeJapan
  3. 3.AMED-CREST, AMEDKobeJapan
  4. 4.Institute for Advanced BiosciencesKeio UniversityYamagataJapan
  5. 5.Intestinal Microbiota ProjectKanagawa Institute of Industrial Science and TechnologyKanagawaJapan
  6. 6.Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
  7. 7.PRESTOJapan Science and Technology AgencySaitamaJapan

Personalised recommendations