Advertisement

Digestive Diseases and Sciences

, Volume 61, Issue 8, pp 2262–2271 | Cite as

Beneficial Effects of Fecal Microbiota Transplantation on Ulcerative Colitis in Mice

  • Zhihui Tian
  • Jie Liu
  • Mengyu Liao
  • Wenjuan Li
  • Jiaqi Zou
  • Xinxin Han
  • Mingjie Kuang
  • Wanqiu Shen
  • Haidong Li
Original Article

Abstract

Background

Ulcerative colitis (UC) is a chronic condition and the most common form of inflammatory bowel disease. The goal of standard treatment is mainly to induce and maintain remission with anti-inflammatory, immunosuppressive agents, and/or colectomy. Fecal microbiota transplantation (FMT) has been used successfully to treat relapsing or refractory Clostridium difficile infection. The alteration of microbiota in mouse models of UC as well as in patients suggested the possibility of treating UC with FMT.

Aims

To study the effects of FMT on dextran sodium sulfate (DSS)-induced UC model in mice.

Methods

Littermates of BALB/c and C57BL/6J were randomized into four groups: normal control , treatment with DSS for 7 days (DSS – FMT), treatment with DSS followed by FMT for another 8 days (DSS + FMT), and treatment with DSS and FMT followed by another 5 days for recovery (remission). Body weight, survival rate, and DAI scores of mice in each group were recorded. Changes in distal colon were studied by histopathology. Alterations of spleen and lamina propria regulatory lymphocytes, major bacterial species in feces and inflammatory cytokines in colon were also studied.

Results

C57BL/6J mice experienced more significant weight loss than BALB/c mice after DSS treatment, regardless of whether the two strains of mice were co-housed or not. FMT caused reversal of DAI scores in BALB/c but not in C57BL/6J mice. In BALB/c mice, FMT also reduced colon inflammation that was paralleled by decreased inflammatory cytokine levels, altered bacterial microbiota, and regulatory lymphocyte proportions.

Conclusions

FMT is effective in a mouse model of UC through its modulation on gut microbiota and the host immune system.

Keywords

Ulcerative colitis Fecal microbiota transplantation Inflammatory cytokines Mice 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81070271 and 21373151).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–1619.CrossRefPubMedGoogle Scholar
  2. 2.
    Corridoni D, Arseneau KO, Cominelli F. Inflammatory bowel disease. Immunol Lett. 2014;161:231–235.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.CrossRefPubMedGoogle Scholar
  4. 4.
    Ellinghaus D, Bethune J, Petersen BS, Franke A. The genetics of Crohn’s disease and ulcerative colitis—status quo and beyond. Scand J Gastroenterol. 2015;50:13–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest. 2014;124:4190–4196.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Davies JM, Abreu MT. The innate immune system and inflammatory bowel disease. Scand J Gastroenterol. 2015;50:24–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Goto Y, Kurashima Y, Kiyono H. The gut microbiota and inflammatory bowel disease. Curr Opin Rheumatol. 2015;27:388–396.CrossRefPubMedGoogle Scholar
  9. 9.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yurkovetskiy LA, Pickard JM, Chervonsky AV. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe. 2015;17:548–552.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Catanzaro R, Anzalone M, Calabrese F, et al. The gut microbiota and its correlations with the central nervous system disorders. Panminerva Med. 2015;57:127–143.PubMedGoogle Scholar
  12. 12.
    Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–576.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol. 2015;45:17–31.CrossRefPubMedGoogle Scholar
  14. 14.
    Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20:753–760.CrossRefPubMedGoogle Scholar
  15. 15.
    Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204–4211.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes. 2014;5:719–728.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–594.CrossRefPubMedGoogle Scholar
  18. 18.
    Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J Clin Microbiol. 2006;44:3172–3177.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–1499.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547.CrossRefPubMedGoogle Scholar
  21. 21.
    Martinez C, Antolin M, Santos J, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103:643–648.CrossRefPubMedGoogle Scholar
  22. 22.
    Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407.CrossRefPubMedGoogle Scholar
  23. 23.
    Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34:794–806.CrossRefPubMedGoogle Scholar
  24. 24.
    Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol. 2010;10:578–587.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tedder TF. B10 cells: a functionally defined regulatory B Cell Subset. J Immunol. 2015;194:1395–1401.CrossRefPubMedGoogle Scholar
  26. 26.
    Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–342.CrossRefPubMedGoogle Scholar
  27. 27.
    Biancheri P, Di Sabatino A, Ammoscato F, et al. Absence of a role for interleukin-13 in inflammatory bowel disease. Eur J Immunol. 2014;44:370–385.CrossRefPubMedGoogle Scholar
  28. 28.
    Bernardo D, Vallejo-Diez S, Mann ER, et al. IL-6 promotes immune responses in human ulcerative colitis and induces a skin-homing phenotype in the dendritic cells and T cells they stimulate. Eur J Immunol. 2012;42:1337–1353.CrossRefPubMedGoogle Scholar
  29. 29.
    National Technical Committee 281 on Laboratory Animal Science of Standardization Administration of China (SAC/TC281). GB14922 (Laboratory animal). Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2011.Google Scholar
  30. 30.
    Murthy SN, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci. 1993;38:1722–1734. doi: 10.1007/BF01303184.CrossRefPubMedGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–408.CrossRefPubMedGoogle Scholar
  32. 32.
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.CrossRefPubMedGoogle Scholar
  33. 33.
    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.Google Scholar
  34. 34.
    Koenigsknecht MJ, Young VB. Faecal microbiota transplantation for the treatment of recurrent Clostridium difficile infection: current promise and future needs. Curr Opin Gastroenterol. 2013;29:628–632.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lo VA, Cohen MB. Fecal microbiota transplantation for Clostridium difficile infection: benefits and barriers. Curr Opin Gastroenterol. 2014;30:47–53.CrossRefGoogle Scholar
  36. 36.
    Kahn SA, Vachon A, Rodriquez D, et al. Patient perceptions of fecal microbiota transplantation for ulcerative colitis. Inflamm Bowel Dis. 2013;19:1506–1513.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010;8:564–577.CrossRefPubMedGoogle Scholar
  38. 38.
    Rizzo A, Losacco A, Carratelli CR. Lactobacillus crispatus modulates epithelial cell defense against Candida albicans through Toll-like receptors 2 and 4, interleukin 8 and human beta-defensins 2 and 3. Immunol Lett. 2013;156:102–109.CrossRefPubMedGoogle Scholar
  39. 39.
    Morelli L. Yogurt, living cultures, and gut health. Am J Clin Nutr. 2014;99:1248S–1250S.CrossRefPubMedGoogle Scholar
  40. 40.
    Johansson ME. Mucus layers in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:2124–2131.CrossRefPubMedGoogle Scholar
  41. 41.
    Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617. doi: 10.1155/2012/718617.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ek WE, D’Amato M, Halfvarson J. The history of genetics in inflammatory bowel disease. Ann Gastroenterol. 2014;27:294–303.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Franchi L, Kamada N, Nakamura Y, et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol. 2012;13:449–456.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    te Velde AA, de Kort F, Sterrenburg E, et al. Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:325–330.CrossRefGoogle Scholar
  45. 45.
    Perrier C, Rutgeerts P. Cytokine blockade in inflammatory bowel diseases. Immunotherapy. 2011;3:1341–1352.CrossRefPubMedGoogle Scholar
  46. 46.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–341.CrossRefPubMedGoogle Scholar
  48. 48.
    Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity. 2002;16:219–230.CrossRefPubMedGoogle Scholar
  49. 49.
    Oka A, Ishihara S, Mishima Y, et al. Role of regulatory B cells in chronic intestinal inflammation: association with pathogenesis of Crohn’s disease. Inflamm Bowel Dis. 2014;20:315–328.CrossRefPubMedGoogle Scholar
  50. 50.
    Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Mol Immunol. 2014;62:296–304.CrossRefPubMedGoogle Scholar
  51. 51.
    Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Freire P, Cardoso R, Figueiredo P, et al. NOD2 gene mutations in ulcerative colitis: useless or misunderstood? Int J Colorectal Dis. 2014;29:653–661.CrossRefPubMedGoogle Scholar
  53. 53.
    Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and inflammatory bowel disease: Is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 2012;107:1452–1459.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhihui Tian
    • 1
  • Jie Liu
    • 1
  • Mengyu Liao
    • 1
  • Wenjuan Li
    • 1
  • Jiaqi Zou
    • 1
  • Xinxin Han
    • 1
  • Mingjie Kuang
    • 1
  • Wanqiu Shen
    • 2
  • Haidong Li
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
  2. 2.Department of Chemical Biology, School of PharmacyTianjin Medical UniversityTianjinChina

Personalised recommendations