Digestive Diseases and Sciences

, Volume 61, Issue 4, pp 1107–1120 | Cite as

Regulatory Effects and Mechanism of Adenovirus-Mediated PTEN Gene on Hepatic Stellate Cells

  • Junyan An
  • Libo Zheng
  • Shurui Xie
  • Fengrong Yin
  • Xiaoxia Huo
  • Jian Guo
  • Xiaolan Zhang
Original Article



Tension homology deleted on chromosome ten (PTEN) is important in liver fibrosis.


The purpose of this study was to evaluate the PTEN gene effects and mechanism of action on hepatic stellate cells (HSCs).


The rat primary HSCs and human LX-2 cells were transfected by an adenovirus containing cDNA constructs encoding the wild-type PTEN (Ad-PTEN), the PTEN mutant G129E gene (Ad-G129E) and RNA interference targeting the PTEN sequence PTEN short hairpin RNA (PTEN shRNA), to up-regulate and down-regulate PTEN expression, respectively. The HSCs were assayed with a fluorescent microscope, real time PCR, Western blot, MTT, flow cytometry and Terminal-deoxynucleoitidyl transferase mediated nick end labeling. In addition, the CCl4 induced rat hepatic fibrosis model was also established to check the in vivo effects of the recombinant adenovirus with various levels of PTEN expression.


The data have shown that the over-expressed PTEN gene led to reduced HSCs activation and viability, caspase-3 activity and cell cycle arrest in the G0/G1 and G2/M phases, as well as negative regulation of the PI3K/Akt and FAK/ERK signaling pathways in vitro. The over-expressed PTEN gene improved liver function, inhibited proliferation and promoted apoptosis of HSCs both in vitro and in vivo.


These data have shown that gene therapy using the recombinant adenovirus encoding wild-type PTEN inhibits proliferation and induces apoptosis of HSCs, which is a potential treatment option for hepatic fibrosis.


PTEN Hepatic stellate cell Hepatic fibrosis Gene therapy 



Hepatic stellate cells


Extracellular matrix


Alpha-smooth muscle actin


Tension homology deleted on chromosome ten


Bile duct ligation


Short hairpin RNA


Green fluorescent protein


Enhanced green fluorescent protein


Hematoxylin and eosin


Masson’s trichrome


Terminal-deoxynucleoitidyl transferase mediated nick end labeling


Flow cytometry


Focal adhesion kinase


Extracellular signal-regulated kinase




Serine–threonine protein kinase B


Alanine aminotransferase


Aspartate aminotransferase



This work was supported by the National Natural Science Foundation of China (Grant 30872513), Natural Science Foundation of Hebei Province (Grant C2010000565), and Hebei Provincial Science and Technology Department (Grant 09966108D). The authors would like to thank the foundations for their support. We appreciate Gregory X Shen for his valuable revision of written English and owe many thanks to Hong Zhang and Jinbo Guo for their photo contributions.

Compliance with ethical standards

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–456.PubMedCrossRefGoogle Scholar
  2. 2.
    Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Brenner DA, Kisseleva T, Scholten D, et al. Origin of myofibroblasts in liver fibrosis. Fibrogenesis Tissue Repair. 2012;5:S17.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology. 2011;53:983–995.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Scholten D, Reichart D, Paik YH, et al. Migration of fibrocytes in fibrogenic liver injury. Am J Pathol. 2011;179:189–198.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wasmuth HE, Weiskirchen R. Pathogenesis of liver fibrosis: modulation of stellate cells by chemokines. Z Gastroenterol. 2010;48:38–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA. 2012;109:9448–9453.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Liu X, Xu J, Brenner DA, Kisseleva T. Reversibility of liver fibrosis and inactivation of fibrogenic myofibroblasts. Curr Pathobiol Rep. 2013;1:209–214.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kim HA, Kim KJ, Seo KH, Lee HK, Im SY. PTEN/MAPK pathways play a key role in platelet-activating factor-induced experimental pulmonary tumor metastasis. FEBS Lett. 2012;586:4296–4302.PubMedCrossRefGoogle Scholar
  10. 10.
    Shi Y, Paluch BE, Wang X, Jiang X. PTEN at a glance. J Cell Sci. 2012;125:4687–4692.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Garcia-Junco-Clemente P, Golshani P. PTEN: a master regulator of neuronal structure, function, and plasticity. Commun Integr Biol. 2014;7:e28358.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Muniyan S, Ingersoll MA, Batra SK, Lin MF. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor. Biochim Biophys Acta. 2014;1846:88–98.PubMedPubMedCentralGoogle Scholar
  13. 13.
    White ES, Thannickal VJ, Carskadon SL, et al. Integrin α4β1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chromosome 10. Am J Respir Crit Care Med. 2003;168:436–442.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    White ES, Atrasz RG, Hu B, et al. Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am J Respir Crit Care Med. 2006;173:112–121.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lan R, Geng H, Polichnowski AJ, et al. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol. 2012;302:F1210–F1223.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vinciguerra M, Veyrat-Durebex C, Moukil MA, Rubbia-Brandt L, Rohner-Jeanrenaud F, Foti M. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-κBp65/mTOR-dependent mechanism. Gastroenterology. 2008;134:268–280.PubMedCrossRefGoogle Scholar
  17. 17.
    Hao LS, Zhang XL, An JY, et al. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis. APMIS. 2009;117:681–691.PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng L, Chen X, Guo J, et al. Differential expression of PTEN in hepatic tissue and hepatic stellate cells during rat liver fibrosis and its reversal. Int J Mol Med. 2012;30:1424–1430.PubMedGoogle Scholar
  19. 19.
    Ma J, Li F, Liu L, et al. Raf kinase inhibitor protein inhibits cell proliferation but promotes cell migration in rat hepatic stellate cells. Liver Int. 2009;29:567–574.PubMedCrossRefGoogle Scholar
  20. 20.
    Hao LS, Zhang XL, An JY, et al. Adenoviral transduction of PTEN induces apoptosis of cultured hepatic stellate cells. Chin Med J (Engl). 2009;122:2907–2911.Google Scholar
  21. 21.
    An J, Zheng L, Xie S, et al. Down-regulation of focal adhesion kinase by short hairpin RNA increased apoptosis of rat hepatic stellate cells. APMIS. 2011;119:319–329.PubMedCrossRefGoogle Scholar
  22. 22.
    Knodell RG, Ishak KG, Black WC, et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic hepatitis. Hepatology. 1981;1:431–435.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang Y, Gao J, Zhang D, et al. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010;53:132–144.PubMedCrossRefGoogle Scholar
  24. 24.
    Singla DK. Akt-mTOR pathway inhibits apoptosis and fibrosis in doxorubicin-induced cardiotoxicity following embryonic stem cell transplantation. Cell Transplant. 2015;24:1031–1042.PubMedGoogle Scholar
  25. 25.
    Takashima M, Parsons CJ, Ikejima K, Watanabe S, White ES, Rippe RA. The tumor suppressor protein PTEN inhibits rat hepatic stellate cell activation. J Gastroenterol. 2009;44:847–855.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Povero D, Busletta C, Novo E, et al. Liver fibrosis: a dynamic and potentially reversible process. Histol Histopathol. 2010;25:1075–1091.PubMedGoogle Scholar
  27. 27.
    Che XH, Jiang WY, Parajuli DR, Zhao YZ, Lee SH, Sohn DH. Apoptotic effect of propyl gallate in activated rat hepatic stellate cells. Arch Pharm Res. 2012;35:2205–2210.PubMedCrossRefGoogle Scholar
  28. 28.
    Li J, Li X, Xu W, et al. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6 K and TGFβ/Smad signalling pathways. Liver Int. 2015;35:1222–1233.PubMedCrossRefGoogle Scholar
  29. 29.
    Marin JJ, Hernandez A, Revuelta IE, et al. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radic Biol Med. 2013;61:218–228.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Duijn PW, Ziel-van der Made AC, van der Korput JA, Trapman J. PTEN-mediated G1 cell-cycle arrest in LNCaP prostate cancer cells is associated with altered expression of cell-cycle regulators. Prostate. 2010;70:135–146.PubMedGoogle Scholar
  31. 31.
    Paul-Samojedny M, Suchanek R, Borkowska P, et al. Knockdown of AKT3 (PKBγ) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. Biomed Res Int. 2014;2014:768181.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Aarts M, Linardopoulos S, Turner NC. Tumour selective targeting of cell cycle kinases for cancer treatment. Curr Opin Pharmacol. 2013;13:1–7.CrossRefGoogle Scholar
  33. 33.
    Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet. 2006;15:2553–2559.PubMedCrossRefGoogle Scholar
  34. 34.
    Mitrea DM, Yoon MK, Ou L, Kriwacki RW. Disorder-function relationships for the cell cycle regulatory proteins p21 and p27. Biol Chem. 2012;393:259–274.PubMedCrossRefGoogle Scholar
  35. 35.
    Brenner DA. Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc. 2009;120:361–368.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J, Xu F, Zhu D, et al. Schistosoma japonicum soluble egg antigens facilitate hepatic stellate cell apoptosis by downregulating Akt expression and upregulating p53 and DR5 Expression. PLoS Negl Trop Dis. 2014;8:e3106.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang S, Yu D. PI(3)king apart PTEN’s role in cancer. Clin Cancer Res. 2010;16:4325–4330.PubMedCrossRefGoogle Scholar
  38. 38.
    Ming M, Han W, Maddox J, et al. UVB-induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes. Oncogene. 2010;29:492–502.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer. 2010;10:342–352.PubMedCrossRefGoogle Scholar
  40. 40.
    Dubrovska A, Kim S, Salamone RJ, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA. 2009;106:268–273.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lagares D, Kapoor M. Targeting focal adhesion kinase in fibrotic diseases. BioDrugs. 2013;27:15–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Podolska K, Stachurska A, Hajdukiewicz K, Malecki M. Gene therapy prospects-intranasal delivery of therapeutic genes. Adv Clin Exp Med. 2012;21:525–534.PubMedGoogle Scholar
  43. 43.
    Sakashita M, Mochizuki S, Sakurai K. Hepatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry. Bioorg Med Chem. 2014;22:5212–5219.PubMedCrossRefGoogle Scholar
  44. 44.
    Baertsch MA, Leber MF, Bossow S, et al. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Ther. 2014;21:373–380.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Junyan An
    • 1
  • Libo Zheng
    • 1
  • Shurui Xie
    • 1
  • Fengrong Yin
    • 1
  • Xiaoxia Huo
    • 1
  • Jian Guo
    • 1
  • Xiaolan Zhang
    • 1
  1. 1.Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of GastroenterologyHebei Institute of GastroenterologyShijiazhuangChina

Personalised recommendations