Digestive Diseases and Sciences

, Volume 61, Issue 1, pp 137–148 | Cite as

Vitamin B5 and N-Acetylcysteine in Nonalcoholic Steatohepatitis: A Preclinical Study in a Dietary Mouse Model

  • Mariana Verdelho Machado
  • Leandi Kruger
  • Mark L. Jewell
  • Gregory Alexander Michelotti
  • Thiago de Almeida Pereira
  • Guanhua Xie
  • Cynthia A. Moylan
  • Anna Mae Diehl
Original Article



Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation.


We aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH.


CoA metabolism was evaluated in methionine–choline deficient (MCD) and Western diet mouse models of NASH. MCD diet-fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH.


Liver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity and correlated with worse liver cell apoptosis, inflammation, and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice.


In mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH.


Nonalcoholic steatohepatitis Coenzyme A Caspase-2 Pantothenate N-Acetylcysteine 



Nonalcoholic fatty liver disease


Nonalcoholic steatohepatitis


Coenzyme A


Methionine–choline deficient


Pantothenate kinase


Wild type


Alanine aminotransferase


Aspartate aminotransferase


Thiobarbituric acid-reactive substances


Alpha-smooth muscle actin


Superoxide dismutase


Glutathione peroxidase




Tumor necrosis factor alpha


Financial Support

This research is supported by NIH R01 DK077794-08, R37 AA010154-19 and R56 DK106633-01 (Diehl AM), and Duke Endowment: The Florence McAlister Professorship (Diehl AM). MVM is the recipient of a PhD grant from Fundação para a Ciência e Tecnologia, FCT, Portugal.

Compliance with ethical standards

Conflict of interest


Supplementary material

10620_2015_3871_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 58 kb)
10620_2015_3871_MOESM2_ESM.tif (526 kb)
Supplementary material 2 (TIFF 526 kb)
10620_2015_3871_MOESM3_ESM.tif (5.9 mb)
Supplementary material 3 (TIFF 5998 kb)
10620_2015_3871_MOESM4_ESM.tif (10.9 mb)
Supplementary material 4 (TIFF 11122 kb)


  1. 1.
    Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–690.PubMedCrossRefGoogle Scholar
  2. 2.
    Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–285.PubMedCrossRefGoogle Scholar
  3. 3.
    Angulo P, Bugianesi E, Bjornsson ES, et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:782 e784–789 e784.CrossRefGoogle Scholar
  4. 4.
    Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547–1554.Google Scholar
  5. 5.
    Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–555.PubMedCrossRefGoogle Scholar
  6. 6.
    Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson ES, Lindblom KR, Robeson A, et al. Metabolomic profiling reveals a role for caspase-2 in lipoapoptosis. J Biol Chem. 2013;288:14463–14475.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Machado MV, Michelotti GA, Pereira TD, et al. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut. 2015;64:1148–1157.PubMedCrossRefGoogle Scholar
  10. 10.
    McCoy F, Darbandi R, Lee HC, et al. Metabolic activation of CaMKII by coenzyme A. Mol Cell. 2013;52:325–339.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Horie S, Isobe M, Suga T. Changes in CoA pools in hepatic peroxisomes of the rat under various conditions. J Biochem. 1986;99:1345–1352.PubMedGoogle Scholar
  12. 12.
    Leonardi R, Zhang YM, Rock CO, Jackowski S. Coenzyme A: back in action. Prog Lipid Res. 2005;44:125–153.PubMedCrossRefGoogle Scholar
  13. 13.
    Robishaw JD, Neely JR. Coenzyme A metabolism. Am J Physiol. 1985;248:E1–E9.PubMedGoogle Scholar
  14. 14.
    Spry C, Kirk K, Saliba KJ. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev. 2008;32:56–106.PubMedCrossRefGoogle Scholar
  15. 15.
    Daugherty M, Polanuyer B, Farrell M, et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem. 2002;277:21431–21439.PubMedCrossRefGoogle Scholar
  16. 16.
    Hodges RE, Ohlson MA, Bean WB. Pantothenic acid deficiency in man. J Clin Invest. 1958;37:1642–1657.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wittwer CT, Beck S, Peterson M, Davidson R, Wilson DE, Hansen RG. Mild pantothenate deficiency in rats elevates serum triglyceride and free fatty acid levels. J Nutr. 1990;120:719–725.PubMedGoogle Scholar
  18. 18.
    Ohsuga S, Ohsuga H, Takeoka T, Ikeda A, Shinohara Y. Metabolic acidosis and hypoglycemia during calcium hopantenate administration—report on 5 patients. Rinsho Shinkeigaku. 1989;29:741–746.PubMedGoogle Scholar
  19. 19.
    Noda S, Haratake J, Sasaki A, Ishii N, Umezaki H, Horie A. Acute encephalopathy with hepatic steatosis induced by pantothenic acid antagonist, calcium hopantenate, in dogs. Liver. 1991;11:134–142.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang YM, Chohnan S, Virga KG, et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem Biol. 2007;14:291–302.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Syn WK, Jung Y, Omenetti A, et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology. 2009;137:1478 e1478–1488 e1478.CrossRefGoogle Scholar
  22. 22.
    Michelotti GA, Xie G, Swiderska M, et al. Smoothened is a master regulator of adult liver repair. J Clin Invest. 2013;123:2380–2394.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Machado MV, Diehl AM. Animal models of NAFLD. In: Chalasani N, Szabo G, eds. Alcoholic and nonalcoholic fatty liver disease. Powell: Springer; 2015.Google Scholar
  24. 24.
    Karasawa T, Yoshida K, Furukawa K, Hosoki K. Feedback inhibition of pantothenate kinase by coenzyme A and possible role of the enzyme for the regulation of cellular coenzyme A level. J Biochem. 1972;71:1065–1067.PubMedGoogle Scholar
  25. 25.
    Zhang YM, Rock CO, Jackowski S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J Biol Chem. 2005;280:32594–32601.PubMedCrossRefGoogle Scholar
  26. 26.
    Rock CO, Karim MA, Zhang YM, Jackowski S. The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene. 2002;291:35–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Machado MV, Michelotti GA, Xie G, et al. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 2015;10:e0127991.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Moylan CA, Pang H, Dellinger A, et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology. 2014;59:471–482.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Angulo P, Machado MV, Diehl AM. Fatty liver disease and fibrosis: mechanisms and clinical implications. Semin. Liver Dis. 2015;35:132–145.Google Scholar
  30. 30.
    Richardson MM, Jonsson JR, Powell EE, et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology. 2007;133:80–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Ucar F, Sezer S, Erdogan S, Akyol S, Armutcu F, Akyol O. The relationship between oxidative stress and nonalcoholic fatty liver disease: its effects on the development of nonalcoholic steatohepatitis. Redox Rep. 2013;18:127–133.PubMedCrossRefGoogle Scholar
  32. 32.
    Alkhouri N, Berk M, Yerian L, et al. OxNASH score correlates with histologic features and severity of nonalcoholic fatty liver disease. Dig Dis Sci. 2014;59:1617–1624.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pereira-Filho G, Ferreira C, Schwengber A, Marroni C, Zettler C, Marroni N. Role of N-acetylcysteine on fibrosis and oxidative stress in cirrhotic rats. Arq Gastroenterol. 2008;45:156–162.PubMedCrossRefGoogle Scholar
  34. 34.
    Thong-Ngam D, Samuhasaneeto S, Kulaputana O, Klaikeaw N. N-acetylcysteine attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis. World J Gastroenterol. 2007;13:5127–5132.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Choi AM, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996;15:9–19.PubMedCrossRefGoogle Scholar
  36. 36.
    Cotter DG, Ercal B, Huang X, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest. 2014;124:5175–5190.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Naruta E, Buko V. Hypolipidemic effect of pantothenic acid derivatives in mice with hypothalamic obesity induced by aurothioglucose. Exp Toxicol Pathol. 2001;53:393–398.PubMedCrossRefGoogle Scholar
  38. 38.
    Shibata K, Takahashi C, Fukuwatari T, Sasaki R. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats. J Nutr Sci Vitaminol. 2005;51:385–391.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang G, Wang J, Ma H, Ansari GA, Khan MF. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress. Toxicol Appl Pharmacol. 2013;273:189–195.PubMedCrossRefGoogle Scholar
  40. 40.
    Palekar A. Effect of pantothenic acid on hippurate formation in sodium benzoate-treated HepG2 cells. Pediatr Res. 2000;48:357–359.PubMedCrossRefGoogle Scholar
  41. 41.
    Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academies Press (US); 1998.Google Scholar
  42. 42.
    Tahiliani AG, Beinlich CJ. Pantothenic acid in health and disease. Vitam Horm. 1991;46:165–228.PubMedCrossRefGoogle Scholar
  43. 43.
    Leonardi R, Zhang YM, Lykidis A, Rock CO, Jackowski S. Localization and regulation of mouse pantothenate kinase 2. FEBS Lett. 2007;581:4639–4644.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Leonardi R, Rock CO, Jackowski S, Zhang YM. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc Natl Acad Sci USA. 2007;104:1494–1499.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Rommelaere S, Millet V, Gensollen T, et al. PPARalpha regulates the production of serum Vanin-1 by liver. FEBS Lett. 2013;587:3742–3748.PubMedCrossRefGoogle Scholar
  46. 46.
    van Diepen JA, Jansen PA, Ballak DB, et al. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism. J Hepatol. 2014;61:366–372.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang B, Lo C, Shen L, et al. The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP. Blood. 2011;117:4569–4579.PubMedCrossRefGoogle Scholar
  48. 48.
    Wilson MJ, Jeyasuria P, Parker KL, Koopman P. The transcription factors steroidogenic factor-1 and SOX9 regulate expression of Vanin-1 during mouse testis development. J Biol Chem. 2005;280:5917–5923.PubMedCrossRefGoogle Scholar
  49. 49.
    Thurston JH, Hauhart RE. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Pediatr Res. 1992;31:419–423.PubMedCrossRefGoogle Scholar
  50. 50.
    Mitchell GA, Gauthier N, Lesimple A, Wang SP, Mamer O, Qureshi I. Hereditary and acquired diseases of acyl-coenzyme A metabolism. Mol Genet Metab. 2008;94:4–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Rana A, Seinen E, Siudeja K, et al. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci USA. 2010;107:6988–6993.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    van Gijsel-Bonnello M, Acar N, Molino Y, et al. Pantethine alters lipid composition and cholesterol content of membrane rafts, with down-regulation of CXCL12-induced T cell migration. J Cell Physiol. 2015;230:2415–2425.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mariana Verdelho Machado
    • 1
    • 2
  • Leandi Kruger
    • 1
  • Mark L. Jewell
    • 1
  • Gregory Alexander Michelotti
    • 1
  • Thiago de Almeida Pereira
    • 1
  • Guanhua Xie
    • 1
  • Cynthia A. Moylan
    • 1
  • Anna Mae Diehl
    • 1
  1. 1.Division of Gastroenterology, Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Gastroenterology Department, Hospital de Santa MariaCHLNLisbonPortugal

Personalised recommendations