Advertisement

Digestive Diseases and Sciences

, Volume 61, Issue 1, pp 107–116 | Cite as

Population, Epidemiological, and Functional Genetics of Gastric Cancer Candidate Genes in Peruvians with Predominant Amerindian Ancestry

  • Roxana Zamudio
  • Latife Pereira
  • Carolina D. Rocha
  • Douglas E. Berg
  • Thaís Muniz-Queiroz
  • Hanaisa P. Sant Anna
  • Lilia Cabrera
  • Juan M. Combe
  • Phabiola Herrera
  • Martha H. Jahuira
  • Felipe B. Leão
  • Fernanda Lyon
  • William A. Prado
  • Maíra R. Rodrigues
  • Fernanda Rodrigues-Soares
  • Meddly L. Santolalla
  • Camila Zolini
  • Aristóbolo M. Silva
  • Robert H. Gilman
  • Eduardo Tarazona-Santos
  • Fernanda S. G. Kehdy
Original Article

Abstract

Background

Gastric adenocarcinoma is associated with chronic infection by Helicobacter pylori and with the host inflammatory response triggered by it, with substantial inter-person variation in the immune response profile due to host genetic factors.

Aim

To investigate the diversity of the proinflammatory genes IL8, its receptors and PTGS2 in Amerindians; to test whether candidate SNPs in these genes are associated with gastric cancer in an admixed population with high Amerindian ancestry from Lima, Peru; and to assess whether an IL8RB promoter-derived haplotype affects gene expression.

Methods

We performed a Sanger-resequencing population survey, a candidate-gene association study (220 cases, 288 controls) and meta-analyses. We also performed an in vitro validation by a reporter gene assay of IL8RB promoter.

Results

The diversity of the promoter of studied genes in Native Americans is similar to Europeans. Although an association between candidate SNPs and gastric cancer was not found in Peruvians, trend in our data is consistent with meta-analyses results that suggest PTGS2-rs689466-A is associated with H. pylori-associated gastric cancer in East Asia. IL8RB promoter-derived haplotype (rs3890158-A/rs4674258-T), common in Peruvians, was up-regulated by TNF-α unlike the ancestral haplotype (rs3890158-G/rs4674258-C). Bioinformatics analysis suggests that this effect stemmed from creation of a binding site for the FOXO3 transcription factor by rs3890158G>A.

Conclusions

Our updated meta-analysis reinforces the role of PTGS2-rs689466-A in gastric cancer in Asians, although more studies that control for ancestry are necessary to clarify its role in Latin Americans. Finally, we suggest that IL8RB-rs3890158G>A is a cis-regulatory SNP.

Keywords

Amerindians Ancestry Association studies Gastric cancer Meta-analyses Proinflammatory genes 

Notes

Acknowledgments

We thank Gifone Rocha, Denise Carmona, Carolina Gomes, Gilderlanio S Araujo, Giordano Soares Souza, Moara Machado, Mateus H Gouveia for discussions on different parts of the project and for technical help.

Funding

Fogarty International Center and National Cancer Institute (5R01TW007894) funded this study. The study and its participants also received funding and fellowships from the following Brazilian agencies: Brazilian National Research Council (CNPq), Ministry of Education (CAPES), Ministry of Health (PNPD-Saúde Program), and the Minas Gerais State Research Agency (FAPEMIG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10620_2015_3859_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3299 kb)

References

  1. 1.
    Ferlay J, Soerjomataram II, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:E359–E386.CrossRefPubMedGoogle Scholar
  2. 2.
    Porras C, Nodora J, Sexton R, et al. Epidemiology of Helicobacter pylori infection in six Latin American countries (SWOG Trial S0701). Cancer Causes Control. 2013;24:209–215.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    IARC. Monographs on the evaluation of carcinogenic risks to humans volume 61 schistosomes, liver flukes and Helicobacter pylori. World Heal Organ Int Agency Res Cancer. 1994;61:177.Google Scholar
  4. 4.
    Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345:196–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Lamb A, Chen L-F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J Cell Biochem. 2013;114:491–497.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kitadai Y, Haruma K, Mukaida N, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res. 2000;6:2735–2740.PubMedGoogle Scholar
  8. 8.
    Sugimoto M, Yamaoka Y, Furuta T. Influence of interleukin polymorphisms on development of gastric cancer and peptic ulcer. World J Gastroenterol. 2010;16:1188–1200.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Recavarren-Arce S, León-Barúa R, Cok J, et al. Helicobacter pylori and progressive gastric pathology that predisposes to gastric cancer. Scand J Gastroenterol Suppl. 1991;181:51–57.CrossRefPubMedGoogle Scholar
  10. 10.
    Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740.PubMedGoogle Scholar
  11. 11.
    Shanks A, El-omar EM. Helicobacter pylori infection, host genetics and gastric cancer. J Dig Dis. 2009;10:157–164.CrossRefPubMedGoogle Scholar
  12. 12.
    Gehmert S, Velapatiño B, Herrera P, et al. Interleukin-1 beta single-nucleotide polymorphism’s C allele is associated with elevated risk of gastric cancer in Helicobacter pylori-infected Peruvians. Am J Trop Med Hyg. 2009;81:804–810.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pereira L, Zamudio R, Soares-Souza G, et al. Socioeconomic and nutritional factors account for the association of gastric cancer with Amerindian ancestry in a Latin American admixed population. PLoS One. 2012;7:e41200.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. 2010;11:533–538.CrossRefPubMedGoogle Scholar
  15. 15.
    Scliar MO, Soares-Souza GB, Chevitarese J, et al. The population genetics of Quechuas, the largest native South American group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity. Am J Phys Anthropol. 2012;147:443–451.CrossRefPubMedGoogle Scholar
  16. 16.
    Tarazona-Santos E, Carvalho-Silva DR, Pettener D, et al. Genetic differentiation in South Amerindians is related to environmental and cultural diversity: evidence from the Y chromosome. Am J Hum Genet. 2001;68:1485–1496.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Machado M, Magalhães WC, Sene A, et al. Phred-Phrap package to analyses tools: a pipeline to facilitate population genetics re-sequencing studies. Investig Genet. 2011;2:1–7.CrossRefGoogle Scholar
  18. 18.
    Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–2497.CrossRefPubMedGoogle Scholar
  19. 19.
    Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73:1162–1169.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265.CrossRefPubMedGoogle Scholar
  21. 21.
    Yong AG, Pearce S. A beginner’s guide to factor analysis : focusing on exploratory factor analysis. Tutor Quant Methods Psychol. 2013;9:79–94.Google Scholar
  22. 22.
    Yaeger R, Avila-Bront A, Abdul K, et al. Comparing genetic ancestry and self-described race in african americans born in the United States and in Africa. Cancer Epidemiol Biomark Prev. 2008;17:1329–1338.CrossRefGoogle Scholar
  23. 23.
    Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    González JR, Armengol L, Solé X, et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics. 2007;23:644–645.PubMedGoogle Scholar
  25. 25.
    Cochran WG. The combination of estimates from different experiments. Int Biom Soc. 1954;10:101–129.Google Scholar
  26. 26.
    Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.CrossRefPubMedGoogle Scholar
  27. 27.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Matys V. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–378.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu F, Pan K, Zhang X, et al. Genetic variants in cyclooxygenase-2: expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology. 2006;130:1975–1984.CrossRefPubMedGoogle Scholar
  30. 30.
    Li Y, Dai L, Zhang J, et al. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol Lett. 2012;3:107–112.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Zhong R, Zhang Z, et al. Interaction of cyclooxygenase-2 promoter polymorphisms with Helicobacter pylori infection and risk of gastric cancer. Mol Carcinog. 2011;50:876–883.CrossRefPubMedGoogle Scholar
  32. 32.
    Chuntharapai A, Kim KJ. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor. J Immunol. 1995;155:2587–2594.PubMedGoogle Scholar
  33. 33.
    Galanter JM, Fernandez-Lopez JC, Gignoux CR, et al. Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet. 2012;8:e1002554.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tabassam FH, Graham DY, Yamaoka Y. Helicobacter pylori-associated regulation of forkhead transcription factors FoxO1/3a in human gastric cells. Helicobacter. 2012;17:193–202.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    DaSilva L, Kirken RA, Taub DD, et al. Molecular cloning of FKHRL1P2, a member of the developmentally regulated fork head domain transcription factor family. Gene. 1998;221:135–142.CrossRefPubMedGoogle Scholar
  36. 36.
    Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47:187–199.CrossRefPubMedGoogle Scholar
  37. 37.
    Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood. 1997;90:3714–3719.PubMedGoogle Scholar
  38. 38.
    Myatt SS. Lam EW-F. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847–859.CrossRefPubMedGoogle Scholar
  39. 39.
    Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–371.CrossRefPubMedGoogle Scholar
  40. 40.
    Waters JP, Pober JS, Bradley JR. Tumour necrosis factor and cancer. J Pathol. 2013;230:241–248.CrossRefPubMedGoogle Scholar
  41. 41.
    Bhattacharya C, Samanta S, Gupta S, Samanta AK. A Ca2+-dependent autoregulation of lipopolysaccharide-induced IL-8 receptor expression in human polymorphonuclear neutrophils. J Immunol. 1997;158:1293–1301.PubMedGoogle Scholar
  42. 42.
    Chu W-M. Tumor necrosis factor. Cancer Lett. 2013;328:222–225.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Snoeks L, Weber CR, Wasland K, et al. Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. Lab Invest. 2009;89:1053–1062.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cheng W-L, Wang C-S, Huang Y-H, Tsai M-M, Liang Y, Lin K-H. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011;22:2267–2276.CrossRefPubMedGoogle Scholar
  45. 45.
    De Oliveira JG, Rossi AFT, Nizato DM, Miyasaki K, Silva AE. Profiles of gene polymorphisms in cytokines and Toll-like receptors with higher risk for gastric cancer. Dig Dis Sci. 2013;58:978–988.CrossRefPubMedGoogle Scholar
  46. 46.
    Tajima F. DNA polymorphism in a subdivided population: the expected number of segregating sites in the two-subpopulation model. Genetics. 1989;123:229–240.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Roxana Zamudio
    • 1
    • 2
  • Latife Pereira
    • 1
  • Carolina D. Rocha
    • 4
  • Douglas E. Berg
    • 5
  • Thaís Muniz-Queiroz
    • 1
  • Hanaisa P. Sant Anna
    • 1
  • Lilia Cabrera
    • 2
    • 3
  • Juan M. Combe
    • 6
  • Phabiola Herrera
    • 2
    • 3
  • Martha H. Jahuira
    • 2
    • 3
  • Felipe B. Leão
    • 4
  • Fernanda Lyon
    • 1
  • William A. Prado
    • 7
  • Maíra R. Rodrigues
    • 1
  • Fernanda Rodrigues-Soares
    • 1
  • Meddly L. Santolalla
    • 1
  • Camila Zolini
    • 1
  • Aristóbolo M. Silva
    • 4
  • Robert H. Gilman
    • 2
    • 3
    • 8
  • Eduardo Tarazona-Santos
    • 1
  • Fernanda S. G. Kehdy
    • 1
    • 9
  1. 1.Department of General Biology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y FilosofíaUniversidad Peruana Cayetano HerediaLimaPeru
  3. 3.Asociación Benéfica PRISMALimaPeru
  4. 4.Department of Morphology, Institute of Biological SciencesFederal University of Minas GeraisBelo HorizonteBrazil
  5. 5.Department of MedicineUniversity California San DiegoLa JollaUSA
  6. 6.Departamento de GastroenterologiaInstituto Nacional de Enfermedades NeoplásicasLimaPeru
  7. 7.Servicio de GastroenterologiaHospital Dos de MayoLimaPeru
  8. 8.Department of International Health, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  9. 9.Laboratório de Hanseníase, Instituto Oswaldo CruzFundação Oswaldo Cruz, FIOCRUZ-RJRio de JaneiroBrazil

Personalised recommendations