Digestive Diseases and Sciences

, Volume 60, Issue 9, pp 2654–2661 | Cite as

Rebamipide Alters the Esophageal Microbiome and Reduces the Incidence of Barrett’s Esophagus in a Rat Model

  • Yukie Kohata
  • Kenichi Nakahara
  • Tetsuya Tanigawa
  • Hirokazu Yamagami
  • Masatsugu Shiba
  • Toshio Watanabe
  • Kazunari Tominaga
  • Yasuhiro Fujiwara
  • Tetsuo Arakawa
Original Article



Barrett’s esophagus (BE) is characterized by a distinct Th2-predominant cytokine profile. However, antigens that shift the immune response toward the Th2 profile are unknown.


We examined the effects of rebamipide on the esophageal microbiome and BE development in a rat model.


BE was induced by esophagojejunostomy in 8-week-old male Wistar rats. Rats were divided into control and rebamipide-treated group receiving either a normal or a 0.225 % rebamipide-containing diet, respectively, and killed 8, 16, 24, and 32 weeks after the operation. PCR-amplified 16S rDNAs extracted from esophageal samples were examined by terminal-restriction fragment length polymorphism (T-RFLP) analysis to assess microbiome composition. The dynamics of four bacterial genera (Lactobacillus, Clostridium, Streptococcus, and Enterococcus) were analyzed by real-time PCR.


The incidences of BE in the control and rebamipide group at 24 and 32 weeks were 80 and 100, and 20 and 33 %, respectively. T-RFLP analysis of normal esophagus revealed that the proportion of Clostridium was 8.3 %, while that of Lactobacillales was 71.8 %. The proportions of Clostridium increased and that of Lactobacillales decreased at 8 weeks in both groups. Such changes were consistently observed in the control but not in the rebamipide group. Clostridium and Lactobacillus expression was lower and higher, respectively, in the rebamipide group than in the control group.


Rebamipide reduced BE development and altered the esophageal microbiome composition, which might play a role in BE development.


Barrett’s esophagus Esophageal microbiome Rebamipide Terminal-restriction fragment length polymorphism 



This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan (Nos. 24590925, 23590924).

Conflict of interest

Dr. Arakawa received lecture fees from Otsuka and Eisai and research grants from Otsuka, Eisai, Astellas, Abbott Japan, Takeda, Dainippon Sumitomo, and Daiichi Sankyo. The remaining authors have no conflict to disclose.


  1. 1.
    Jankowski JA, Wright NA, Meltzer SJ, et al. Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Pathol. 1999;154:965–973.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Pera M. Experimental Barrett’s esophagus and the origin of intestinal metaplasia. Chest Surg Clin N Am. 2002;12:25–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Seery JP. Stem cells of the oesophageal epithelium. J Cell Sci. 2002;115:1783–1789.PubMedGoogle Scholar
  4. 4.
    Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21:43–50.PubMedGoogle Scholar
  5. 5.
    Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50:451–459.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Moons LM, Kusters JG, Bultman E, et al. Barrett’s oesophagus is characterized by a predominantly humoral inflammatory response. J Pathol. 2005;207:269–276.CrossRefPubMedGoogle Scholar
  7. 7.
    Dvorakova K, Payne CM, Ramsey L, et al. Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin Cancer Res. 2004;10:2020–2028.CrossRefPubMedGoogle Scholar
  8. 8.
    Kohata Y, Fujiwara Y, Machida H, et al. Role of Th2 cytokines in the development of Barrett’s esophagus in rats. J Gastroenterol. 2011;46:883–893.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang ZK, Yang YS. Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol. 2013;19:1541–1550.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Yang L, Chaudhary N, Baghdadi J, Pei Z. Microbiome in reflux disorders and esophageal adenocarcinoma. Cancer J. 2014;20:207–210.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Arakawa T, Higuchi K, Fujiwara Y, et al. 15th anniversary of rebamipide: looking ahead to the new mechanisms and new applications. Dig Dis Sci. 2005;50:S3–S11.CrossRefPubMedGoogle Scholar
  13. 13.
    Tanigawa T, Watanabe T, Otani K, Nadatani Y, et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of alpha-defensin 5. Eur J Pharmacol. 2013;704:64–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Pera M, Brito MJ, Poulsom R, et al. Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats. Carcinogenesis. 2000;21:1587–1591.CrossRefPubMedGoogle Scholar
  15. 15.
    Levrat M, Lambert R, Kirshbaum G. Esophagitis produced by reflux of duodenal contents in rats. Am J Dig Dis. 1962;7:564–573.CrossRefPubMedGoogle Scholar
  16. 16.
    Pera M, Cardesa A, Bombi JA, Ernst H, Pera C, Mohr U. Influence of esophagojejunostomy on the induction of adenocarcinoma of the distal esophagus in Sprague–Dawley rats by subcutaneous injection of 2,6-dimethylnitrosomorpholine. Cancer Res. 1989;49:6803–6808.PubMedGoogle Scholar
  17. 17.
    Imaeda H, Fujimoto T, Takahashi K, Kasumi E, Fujiyama Y, Andoh A. Terminal-restriction fragment length polymorphism (T-RFLP) analysis for changes in the gut microbiota profiles of indomethacin- and rebamipide-treated mice. Digestion. 2012;86:250–257.CrossRefPubMedGoogle Scholar
  18. 18.
    Nagashima K, Hisada T, Sato M, Mochizuki J. Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol. 2003;69:1251–1262.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One. 2014;9:e105592.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–6465.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Songjinda P, Nakayama J, Tateyama A, et al. Differences in developing intestinal microbiota between allergic and non-allergic infants: a pilot study in Japan. Biosci Biotechnol Biochem. 2007;71:2338–2342.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol. 2007;73:32–39.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Aliment Pharmacol Ther. 2013;37:1084–1092.CrossRefPubMedGoogle Scholar
  25. 25.
    Kauppila JH, Selander KS. Toll-like receptors in esophageal cancer. Front Immunol. 2014;7:200.Google Scholar
  26. 26.
    Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012;18:2138–2144.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Watanabe T, Higuchi K, Kobata A, et al. Non-steroidal anti-inflammatory drug-induced small intestinal damage is toll-like receptor 4 dependent. Gut. 2008;57:181–187.CrossRefPubMedGoogle Scholar
  28. 28.
    Watanabe T, Nishio H, Tanigawa T, et al. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol. 2009;297:G506–G513.CrossRefPubMedGoogle Scholar
  29. 29.
    Poehlmann A, Kuester D, Malfertheiner P, Guenther T, Roessner A. Inflammation and Barrett’s carcinogenesis. Pathol Res Pract. 2012;208:269–280.CrossRefPubMedGoogle Scholar
  30. 30.
    Lind A, Koenderman L, Kusters JG, Siersema PD. Squamous tissue lymphocytes in the esophagus of controls and patients with reflux esophagitis and Barrett’s esophagus are characterized by a non-inflammatory phenotype. PLoS One. 2014;9:e106261.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yukie Kohata
    • 1
  • Kenichi Nakahara
    • 1
  • Tetsuya Tanigawa
    • 1
  • Hirokazu Yamagami
    • 1
  • Masatsugu Shiba
    • 1
  • Toshio Watanabe
    • 1
  • Kazunari Tominaga
    • 1
  • Yasuhiro Fujiwara
    • 1
  • Tetsuo Arakawa
    • 1
  1. 1.Department of Gastroenterology, Graduate School of MedicineOsaka City UniversityOsakaJapan

Personalised recommendations