Skip to main content

Advertisement

Log in

Raloxifene Ameliorates Liver Fibrosis of Nonalcoholic Steatohepatitis Induced by Choline-Deficient High-Fat Diet in Ovariectomized Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

The prevalence of nonalcoholic fatty liver disease (NAFLD) is higher in men than in women, but according to some epidemiological studies, this gender difference disappears after menopause. Estrogen therapy protects against NAFLD and nonalcoholic steatohepatitis (NASH) after menopause. We investigated the therapeutic effect of raloxifene, a second-generation selective estrogen-receptor modulator, on NASH induced by a choline-deficient high-fat (CDHF) diet in female ovariectomized (OVX) mice.

Methods

Seven-week-old female C57BL/6J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + raloxifene (intraperitoneal injection, 3 mg/kg body weight/day; OVX + RLX group). These three groups of mice were fed a CDHF diet for 8 weeks; choline-sufficient high-fat (CSHF) diet was used as control diet. Serum biochemical indicators of hepatic function and liver histological changes were evaluated.

Results

Compared with CSHF diet, ovariectomy enhances liver injury and fibrosis in CDHF diet-fed mice. Serum alanine aminotransferase (ALT) levels were significantly lower in the OVX + RLX group than in the OVX group. The OVX group developed extensive steatosis with inflammation and fibrosis. Lobular inflammatory scores and fibrosis staging in the OVX + RLX group were significantly lower than in the OVX group. Furthermore, the OVX + RLX group exhibited significantly higher expression of hepatic estrogen receptor-α, which was significantly lower in the OVX group than in the SHAM group.

Conclusions

Raloxifene may ameliorate progression of liver fibrosis of NASH induced by CDHF diet in ovariectomized female mice, and up-regulation of estrogen receptor-α may play an important role in the beneficial effects of raloxifene on NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SERM:

Selective estrogen-receptor modulator

FFA:

Free fatty acids

CDHF:

Choline-deficient high-fat

CSHF:

Choline-sufficient high-fat

OVX:

Ovariectomized

NASH:

Nonalcoholic steatohepatitis

ALT:

Alanine aminotransferase

NAFLD:

Nonalcoholic fatty liver disease

AST:

Aspartate transaminase

SMA:

Smooth muscle actin

HSC:

Hepatic stellate cell

NAS:

NAFLD activity score

VLDL:

Very low-density lipoprotein

TGF:

Transforming growth factor

ER:

Estrogen receptor

References

  1. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–171.

    Article  CAS  PubMed  Google Scholar 

  2. Brunt EM. Nonalcoholic steatohepatitis. Semin Liver Dis. 2004;24:3–20.

    PubMed  Google Scholar 

  3. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes (Lond). 2008;32:949–958.

    Article  CAS  Google Scholar 

  4. Ley CJ, Lees B, Stevenson JC. Sex- and menopause-associated changes in body-fat distribution. Am J Clin Nutr. 1992;55:950–954.

    CAS  PubMed  Google Scholar 

  5. Weston SR, Leyden W, Murphy R, et al. Racial and ethnic distribution of nonalcoholic fatty liver in persons with newly diagnosed chronic liver disease. Hepatology. 2005;41:372–379.

    Article  PubMed  Google Scholar 

  6. Yatsuji S, Hashimoto E, Tobari M, Tokushige K, Shiratori K. Influence of age and gender in Japanese patients with non-alcoholic steatohepatitis. Hepatol Res. 2007;37:1034–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. Gastroenterology. 2002;122:1649–1657.

    Article  PubMed  Google Scholar 

  8. McKenzie J, Fisher BM, Jaap AJ, Stanley A, Paterson K, Sattar N. Effects of HRT on liver enzyme levels in women with type 2 diabetes: a randomized placebo-controlled trial. Clin Endocrinol (Oxf). 2006;65:40–44.

    Article  CAS  Google Scholar 

  9. Codes L, Asselah T, Cazals-Hatem D, et al. Liver fibrosis in women with chronic hepatitis C: evidence for the negative role of the menopause and steatosis and the potential benefit of hormone replacement therapy. Gut. 2007;56:390–395.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yasuda M, Shimizu I, Shiba M, Ito S. Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver in rats. Hepatology. 1999;29:719–727.

    Article  CAS  PubMed  Google Scholar 

  11. Shang Y. Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nat Rev Cancer. 2006;6:360–368.

    Article  CAS  PubMed  Google Scholar 

  12. Pearce ST, Jordan VC. The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol. 2004;50:3–22.

    Article  PubMed  Google Scholar 

  13. Fuchs-Young R, Glasebrook AL, Short LL, et al. Raloxifene is a tissue-selective agonist/antagonist that functions through the estrogen receptor. Ann NY Acad Sci. 1995;761:355–360.

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu I, Ito S. Protection of estrogens against the progression of chronic liver disease. Hepatol Res. 2007;37:239–247.

    Article  CAS  PubMed  Google Scholar 

  15. Takayama F, Nakamoto K, Totani N, et al. Effects of docosahexaenoic acid in an experimental rat model of nonalcoholic steatohepatitis. J Oleo Sci. 2010;59:407–414.

    Article  CAS  PubMed  Google Scholar 

  16. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;26:497–509.

    Google Scholar 

  17. Wu G, Zhang L, Li T, Lopaschuk G, Vance DE, Jacobs RL. Choline deficiency attenuates body weight gain and improves glucose tolerance in ob/ob mice. J Obes. 2012;2012:319172.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–2474.

    Article  CAS  PubMed  Google Scholar 

  19. Chow JD, Jones ME, Prelle K, Simpson ER, Boon WC. A selective estrogen receptor alpha agonist ameliorates hepatic steatosis in the male aromatase knockout mouse. J Endocrinol. 2011;210:323–334.

    Article  CAS  PubMed  Google Scholar 

  20. Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int Off J Int Assoc Study Liver. 2006;26:856–863.

    Article  Google Scholar 

  21. Yang JD, Abdelmalek MF, Pang H, et al. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology. 2014;59:1406–1414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229–250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fischer LM, daCosta KA, Kwock L, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007;85:1275–1285.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Fischer LM, da Costa KA, Kwock L, Galanko J, Zeisel SH. Dietary choline requirements of women: effects of estrogen and genetic variation. Am J Clin Nutr. 2010;92:1113–1119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hildebrand F, Hubbard WJ, Choudhry MA, et al. Kupffer cells and their mediators: the culprits in producing distant organ damage after trauma-hemorrhage. Am J Pathol. 2006;169:784–794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhou Y, Shimizu I, Lu G, et al. Hepatic stellate cells contain the functional estrogen receptor beta but not the estrogen receptor alpha in male and female rats. Biochem Biophys Res Commun. 2001;286:1059–1065.

    Article  CAS  PubMed  Google Scholar 

  27. Vickers AE, Lucier GW. Estrogen receptor levels and occupancy in hepatic sinusoidal endothelial and Kupffer cells are enhanced by initiation with diethylnitrosamine and promotion with 17alpha-ethinylestradiol in rats. Carcinogenesis. 1996;17:1235–1242.

    Article  CAS  PubMed  Google Scholar 

  28. Shupnik MA, Gordon MS, Chin WW. Tissue-specific regulation of rat estrogen receptor mRNAs. Mol Endocrinol. 1989;3:660–665.

    Article  CAS  PubMed  Google Scholar 

  29. Xu JW, Gong J, Chang XM, et al. Effects of estradiol on liver estrogen receptor-alpha and its mRNA expression in hepatic fibrosis in rats. World J Gastroenterol. 2004;10:250–254.

    CAS  PubMed  Google Scholar 

  30. Furusyo N, Ogawa E, Sudoh M, et al. Raloxifene hydrochloride is an adjuvant antiviral treatment of postmenopausal women with chronic hepatitis C: a randomized trial. J Hepatol. 2012;57:1186–1192.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Itagaki T, Shimizu I, Cheng X, et al. Opposing effects of oestradiol and progesterone on intracellular pathways and activation processes in the oxidative stress induced activation of cultured rat hepatic stellate cells. Gut. 2005;54:1782–1789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wong CM, Yung LM, Leung FP, et al. Raloxifene protects endothelial cell function against oxidative stress. Br J Pharmacol. 2008;155:326–334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kamada Y, Kiso S, Yoshida Y, et al. Estrogen deficiency worsens steatohepatitis in mice fed high-fat and high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1031–G1043.

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed-Sorour H, Bailey CJ. Role of ovarian hormones in the long-term control of glucose homeostasis, glycogen formation and gluconeogenesis. Ann Nutr Metabol. 1981;25:208–212.

    Article  CAS  Google Scholar 

  36. Prestes J, Leite RD, Pereira GB, et al. Resistance training and glycogen content in ovariectomized rats. Int J Sports Med. 2012;33:550–554.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (26460998) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflict of interest

There is no conflict of interest with regard to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Ishigami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Ishigami, M., Achiwa, K. et al. Raloxifene Ameliorates Liver Fibrosis of Nonalcoholic Steatohepatitis Induced by Choline-Deficient High-Fat Diet in Ovariectomized Mice. Dig Dis Sci 60, 2730–2739 (2015). https://doi.org/10.1007/s10620-015-3660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3660-6

Keywords

Navigation