Digestive Diseases and Sciences

, Volume 60, Issue 5, pp 1195–1205 | Cite as

Autoimmunity Links Vinculin to the Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter jejuni Infection in a Rat Model

  • Mark Pimentel
  • Walter Morales
  • Venkata Pokkunuri
  • Constantinos Brikos
  • Sun Moon Kim
  • Seong Eun Kim
  • Konstantinos Triantafyllou
  • Stacy Weitsman
  • Zachary Marsh
  • Emily Marsh
  • Kathleen S. Chua
  • Shanthi Srinivasan
  • Gillian M. Barlow
  • Christopher Chang
Original Article



Acute gastroenteritis can precipitate irritable bowel syndrome (IBS) in humans. Cytolethal distending toxin is common to all pathogens causing gastroenteritis. Its active subunit, CdtB, is associated with post-infectious bowel changes in a rat model of Campylobacter jejuni infection, including small intestinal bacterial overgrowth (SIBO).


To evaluate the role of host antibodies to CdtB in contributing to post-infectious functional sequelae in this rat model.


Ileal tissues from non-IBS human subjects, C. jejuni-infected and control rats were immunostained with antibodies to CdtB, c-Kit, S-100, PGP 9.5 and vinculin. Cytosolic and membrane proteins from mouse enteric neuronal cell lysates were immunoprecipitated with anti-CdtB and analyzed by mass spectrometry. ELISAs were performed on rat cardiac serum using CdtB or vinculin as antigens.


Anti-CdtB antibodies bound to a cytosolic protein in interstitial cells of Cajal (ICC) and myenteric ganglia in C. jejuni-infected and naïve rats and human subjects. Mass spectrometry identified vinculin, confirmed by co-localization and ELISAs. Anti-CdtB antibodies were higher in C. jejuni-infected rats (1.27 ± 0.15) than controls (1.76 ± 0.12) (P < 0.05), and rats that developed SIBO (2.01 ± 0.18) vs. rats that did not (1.44 ± 0.11) (P = 0.019). Vinculin expression levels were reduced in C. jejuni-infected rats (0.058 ± 0.053) versus controls (0.087 ± 0.023) (P = 0.0001), with greater reductions in rats with two C. jejuni infections (P = 0.0001) and rats that developed SIBO (P = 0.001).


Host anti-CdtB antibodies cross-react with vinculin in ICC and myenteric ganglia, required for normal gut motility. Circulating antibody levels and loss of vinculin expression correlate with number of C. jejuni exposures and SIBO, suggesting that effects on vinculin are important in the effects of C. jejuni infection on the host gut.


Irritable bowel syndrome Cytolethal distending toxin Vinculin Small intestinal bacterial overgrowth 



The antibody to the near-full-length CdtB protein used in this study was provided by Dr. Patricia Guerry (Naval Medical Research Center, Silver Spring, MD), and the recombinant CdtB protein used in this study was provided by Dr. Kenneth Bradley, MIMG Department, UCLA. This work was supported by grants from the Beatrice and Samuel A. Seaver Foundation (MP), the Shoolman Foundation (MP) and the Hansch Family Fund (MP), and by RO1 DK080684 (SS) and a VA-MERIT award (SS).

Conflict of interest

Mark Pimentel has received grants from and is a consultant for Salix Pharmaceuticals and Commonwealth Laboratories, with whom Cedars-Sinai has licensing agreements. The remaining authors have no conflicts to disclose.

Supplementary material

10620_2014_3435_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 4982 kb)


  1. 1.
    Choung RS, Locke GR 3rd. Epidemiology of IBS. Gastroenterol Clin North Am. 2011;40:1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2012;10:712 e714–721 e714.Google Scholar
  3. 3.
    Lembo A. The clinical and economic burden of irritable bowel syndrome. Pract Gastroenterol. 2007;20:3–9.Google Scholar
  4. 4.
    Cash B. Economic impact of irritable bowel syndrome: what does the future hold? Am J Manag Care. 2005;11:S4–S6.PubMedGoogle Scholar
  5. 5.
    American Gastroenterological Association. The Burden of Gastrointestinal Diseases. Bethesda, MD: American Gastroenterological Association; 2001.Google Scholar
  6. 6.
    Agarwal N, Spiegel BM. The effect of irritable bowel syndrome on health-related quality of life and health care expenditures. Gastroenterol Clin North Am. 2011;40:11–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45:II43–II47.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Drossman DA, Richter JE, Talley NJ, Corazziari E, Thompson WG, Whitehead WE. Functional gastrointestinal disorders. Boston: Little Brown; 1994.Google Scholar
  9. 9.
    Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–1491.CrossRefPubMedGoogle Scholar
  10. 10.
    Rome Foundation. Guidelines—Rome III diagnostic criteria for functional gastrointestinal disorders. J Gastrointestin Liver Dis. 2006;15:307–312.Google Scholar
  11. 11.
    Kruis W, Thieme C, Weinzierl M, Schussler P, Holl J, Paulus W. A diagnostic score for the irritable bowel syndrome. Its value in the exclusion of organic disease. Gastroenterology. 1984;87:1–7.PubMedGoogle Scholar
  12. 12.
    Manning AP, Thompson WG, Heaton KW, Morris AF. Towards positive diagnosis of the irritable bowel. Br Med J. 1978;2:653–654.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Pimentel M, Hwang L, Melmed GY, et al. New clinical method for distinguishing D-IBS from other gastrointestinal conditions causing diarrhea: the LA-IBS diagnostic strategy. Dig Dis Sci. 2010;55:145–149.CrossRefPubMedGoogle Scholar
  14. 14.
    Quigley EM. Small intestinal bacterial overgrowth: what it is and what it is not. Curr Opin Gastroenterol. 2014;30:141–146.CrossRefPubMedGoogle Scholar
  15. 15.
    Yu D, Cheeseman F, Vanner S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut. 2011;60:334–340.CrossRefPubMedGoogle Scholar
  16. 16.
    Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95:3503–3506.CrossRefPubMedGoogle Scholar
  17. 17.
    Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–419.PubMedGoogle Scholar
  18. 18.
    Lupascu A, Gabrielli M, Lauritano EC, et al. Hydrogen glucose breath test to detect small intestinal bacterial overgrowth: a prevalence case-control study in irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:1157–1160.CrossRefPubMedGoogle Scholar
  19. 19.
    Cuoco L, Salvagnini M. Small intestine bacterial overgrowth in irritable bowel syndrome: a retrospective study with rifaximin. Minerva Gastroenterol Dietol. 2006;52:89–95.PubMedGoogle Scholar
  20. 20.
    Majewski M, McCallum RW. Results of small intestinal bacterial overgrowth testing in irritable bowel syndrome patients: clinical profiles and effects of antibiotic trial. Adv Med Sci. 2007;52:139–142.PubMedGoogle Scholar
  21. 21.
    Posserud I, Stotzer PO, Bjornsson ES, Abrahamsson H, Simren M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56:802–808.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci. 2012;57:1321–1329.CrossRefPubMedGoogle Scholar
  23. 23.
    Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364:22–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Spiller RC, Jenkins D, Thornley JP, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47:804–811.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia and irritable bowel syndrome after a salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology. 2005;129:98–104.CrossRefPubMedGoogle Scholar
  26. 26.
    Okhuysen PC, Jiang ZD, Carlin L, Forbes C, DuPont HL. Post-diarrhea chronic intestinal symptoms and irritable bowel syndrome in North American travelers to Mexico. Am J Gastroenterol. 2004;99:1774–1778.CrossRefPubMedGoogle Scholar
  27. 27.
    Ji S, Park H, Lee D, Song YK, Choi JP, Lee SI. Post-infectious irritable bowel syndrome in patients with shigella infection. J Gastroenterol Hepatol. 2005;20:381–386.CrossRefPubMedGoogle Scholar
  28. 28.
    Halvorson HA, Schlett CD, Riddle MS. Postinfectious irritable bowel syndrome—a meta-analysis. Am J Gastroenterol. 2006;101:1894–1899. quiz 1942.CrossRefPubMedGoogle Scholar
  29. 29.
    Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535–544.CrossRefPubMedGoogle Scholar
  30. 30.
    Tauxe RV. Epidemiology of Campylobacter jejuni infections in the united states and other industrialized nations. In: Nachamkin I, Blaser MJ, Tompkins LS, eds. Campylobacter jejuni: Current and Future Trends. Washington: American Society for Microbiology; 1992:9–12.Google Scholar
  31. 31.
    Pimentel M, Chatterjee S, Chang C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci. 2008;53:982–989.CrossRefPubMedGoogle Scholar
  32. 32.
    Vantrappen G, Janssens J, Hellemans J, Ghoos Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59:1158–1166.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Pimentel M, Soffer EE, Chow EJ, Kong Y, Lin HC. Lower frequency of MMC is found in IBS subjects with abnormal lactulose breath test, suggesting bacterial overgrowth. Dig Dis Sci. 2002;47:2639–2643.CrossRefPubMedGoogle Scholar
  34. 34.
    Nieuwenhuijs VB, Verheem A, van Duijvenbode-Beumer H, et al. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann Surg. 1998;228:188–193.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Jee SR, Morales W, Low K, et al. ICC density predicts bacterial overgrowth in a rat model of post-infectious IBS. World J Gastroenterol. 2010;16:3680–3686.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Pokkunuri V, Pimentel M, Morales W, et al. Role of cytolethal distending toxin in altered stool form and bowel phenotypes in a rat model of post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:434–442.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Sung J, Morales W, Kim G, et al. Effect of repeated Campylobacter jejuni infection on gut flora and mucosal defense in a rat model of post infectious functional and microbial bowel changes. Neurogastroenterol Motil. 2013;25:529–537.CrossRefPubMedGoogle Scholar
  38. 38.
    Der-Silaphet T, Malysz J, Hagel S, Larry Arsenault A, Huizinga JD. Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology. 1998;114:724–736.CrossRefPubMedGoogle Scholar
  39. 39.
    Malysz J, Thuneberg L, Mikkelsen HB, Huizinga JD. Action potential generation in the small intestine of w mutant mice that lack interstitial cells of Cajal. Am J Physiol. 1996;271:G387–G399.PubMedGoogle Scholar
  40. 40.
    Langton P, Ward SM, Carl A, Norell MA, Sanders KM. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA. 1989;86:7280–7284.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Ordog T, Ward SM, Sanders KM. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518:257–269.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Streutker CJ, Huizinga JD, Campbell F, Ho J, Riddell RH. Loss of cd117 (c-kit)- and cd34-positive ICC and associated cd34-positive fibroblasts defines a subpopulation of chronic intestinal pseudo-obstruction. Am J Surg Pathol. 2003;27:228–235.CrossRefPubMedGoogle Scholar
  43. 43.
    Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology. 1996;111:279–288.CrossRefPubMedGoogle Scholar
  44. 44.
    Ordog T, Takayama I, Cheung WK, Ward SM, Sanders KM. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000;49:1731–1739.CrossRefPubMedGoogle Scholar
  45. 45.
    Bassotti G, Villanacci V, Maurer CA, et al. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut. 2006;55:41–46.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.PubMedGoogle Scholar
  47. 47.
    Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SM. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006;131:445–450. quiz 660.CrossRefPubMedGoogle Scholar
  48. 48.
    Shah ED, Riddle MS, Chang C, Pimentel M. Estimating the contribution of acute gastroenteritis to the overall prevalence of irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:200–204.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol. 2011;46:164–174.CrossRefPubMedGoogle Scholar
  50. 50.
    Wood JD, Liu S, Drossman DA, Ringel Y, Whitehead W. Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:78–85.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Peng X, Cuff LE, Lawton CD, DeMali KA. Vinculin regulates cell-surface e-cadherin expression by binding to beta-catenin. J Cell Sci. 2010;123:567–577.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Peng X, Nelson ES, Maiers JL, DeMali KA. New insights into vinculin function and regulation. Int Rev Cell Mol Biol. 2011;287:191–231.CrossRefPubMedGoogle Scholar
  53. 53.
    Demali KA. Vinculin—a dynamic regulator of cell adhesion. Trends Biochem Sci. 2004;29:565–567.CrossRefPubMedGoogle Scholar
  54. 54.
    Shen K, Tolbert CE, Guilluy C, et al. The vinculin c-terminal hairpin mediates f-actin bundle formation, focal adhesion, and cell mechanical properties. J Biol Chem. 2011;286:45103–45115.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Zemljic-Harpf AE, Ponrartana S, Avalos RT, et al. Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am J Pathol. 2004;165:1033–1044.CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Varon C, Mocan I, Mihi B, et al. Helicobacter pullorum cytolethal distending toxin targets vinculin and cortactin and triggers formation of lamellipodia in intestinal epithelial cells. J Infect Dis. 2014;209:588–599.CrossRefPubMedGoogle Scholar
  57. 57.
    Izard T, Tran Van Nhieu G, Bois PR. Shigella applies molecular mimicry to subvert vinculin and invade host cells. J Cell Biol. 2006;175:465–475.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Park H, Lee JH, Gouin E, Cossart P, Izard T. The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem. 2011;286:35096–35103.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mark Pimentel
    • 1
  • Walter Morales
    • 1
  • Venkata Pokkunuri
    • 1
  • Constantinos Brikos
    • 1
  • Sun Moon Kim
    • 1
    • 2
  • Seong Eun Kim
    • 1
    • 3
  • Konstantinos Triantafyllou
    • 4
  • Stacy Weitsman
    • 1
  • Zachary Marsh
    • 1
  • Emily Marsh
    • 1
  • Kathleen S. Chua
    • 1
  • Shanthi Srinivasan
    • 5
  • Gillian M. Barlow
    • 1
  • Christopher Chang
    • 1
  1. 1.GI Motility Program, Division of GastroenterologyCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Department of Internal Medicine, Myunggok Medical Research InstituteKonyang University College of MedicineDaejeonSouth Korea
  3. 3.Department of Internal Medicine, Ewha Medical Research InstituteEwha Womans University School of MedicineSeoulSouth Korea
  4. 4.2nd Department of Internal Medicine and Research Unit, Attikon University General Hospital, Medical SchoolAthens UniversityHaidariGreece
  5. 5.Division of Digestive Diseases, Department of MedicineEmory University and Atlanta VAMCAtlantaUSA

Personalised recommendations