Skip to main content

Advertisement

Log in

Normal Controlled Attenuation Parameter Values: A Prospective Study of Healthy Subjects Undergoing Health Checkups and Liver Donors in Korea

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

The controlled attenuation parameter (CAP) is a noninvasive method of assessing hepatic steatosis. We defined the normal range of CAP values in healthy subjects and evaluated the associated factors.

Methods

CAP values were measured in a cohort of healthy subjects who were screened as living liver transplantation donors and those who underwent health checkups. Subjects with current or a history of chronic liver disease, abnormalities on liver-related laboratory tests, or fatty liver on ultrasonography or biopsy were excluded.

Results

The mean age of the 264 recruited subjects (131 males and 133 females; 76 potential liver donors and 188 subjects who had undergone health checkups) was 49.2 years. The mean CAP value was 224.8 ± 38.7 dB/m (range 100.0–308.0 dB/m), and the range of normal CAP values (5th–95th percentiles) was 156.0–287.8 dB/m. The mean CAP value was significantly higher in the health checkup than in the potential liver donor group (227.5 ± 42.0 vs. 218.2 ± 28.3 dB/m, P = 0.040). CAP values did not differ significantly according to gender or age in either group (all P > 0.05). In a multivariate linear regression analysis, body mass index (β = 0.271, P = 0.024) and triglyceride levels (β = 0.348, P = 0.008) were found to be independently associated with CAP values.

Conclusion

We determined the normal range of CAP values and found that body mass index and triglyceride levels were associated with the CAP values of healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAP:

Controlled attenuation parameter

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

LSV:

Liver stiffness value

CLD:

Chronic liver disease

BMI:

Body mass index

HBsAg:

Hepatitis B virus surface antigen

Anti-HCV:

Hepatitis C virus antibody

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

GGT:

Gamma glutamyl transpeptidase

ALP:

Alkaline phosphatase

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

IQR:

Inter-quartile range

References

  1. Farrell GC, Wong VW, Chitturi S. NAFLD in Asia-as common and important as in the West. Nat Rev Gastroenterol Hepatol.. 2013;10:307–318.

    Article  CAS  PubMed  Google Scholar 

  2. Park SH. Current status of liver disease in Korea: nonalcoholic fatty liver disease. Korean J Hepatol.. 2009;15:S34–S39.

    Article  PubMed  Google Scholar 

  3. Yilmaz Y. Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther. 2012;36:815–823.

    Article  CAS  PubMed  Google Scholar 

  4. Barsic N, Lerotic I, Smircic-Duvnjak L, et al. Overview and developments in noninvasive diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:3945–3954.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Strauss S, Gavish E, Gottlieb P, et al. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol. 2007;189:W320–W323.

    Article  PubMed  Google Scholar 

  6. Ryan CK, Johnson LA, Germin BI, et al. One hundred consecutive hepatic biopsies in the workup of living donors for right lobe liver transplantation. Liver Transpl. 2002;8:1114–1122.

    Article  PubMed  Google Scholar 

  7. Park SH, Kim PN, Kim KW, et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology. 2006;239:105–112.

    Article  PubMed  Google Scholar 

  8. van Werven JR, Marsman HA, Nederveen AJ, et al. Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology. 2010;256:159–168.

    Article  PubMed  Google Scholar 

  9. Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36:1825–1835.

    Article  PubMed  Google Scholar 

  10. Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS ONE. 2014;9:e91987.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2014. (Epub ahead of print). doi:10.1111/jgh.12557.

  12. Chon YE, Jung KS, Kim SU, et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: a prospective study of a native Korean population. Liver Int.. 2014;34:102–109.

    Article  PubMed  Google Scholar 

  13. Sasso M, Tengher-Barna I, Ziol M, et al. Novel controlled attenuation parameter for noninvasive assessment of steatosis using Fibroscan®: validation in chronic hepatitis C. J Viral Hepat.. 2012;19:244–253.

    Article  CAS  PubMed  Google Scholar 

  14. Shen F, Zheng RD, Mi YQ, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol. 2014;20:4702–4711.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yilmaz Y, Ergelen R, Akin H, et al. Noninvasive detection of hepatic steatosis in patients without ultrasonographic evidence of fatty liver using the controlled attenuation parameter evaluated with transient elastography. Eur J Gastroenterol Hepatol. 2013;25:1330–1334.

    Article  PubMed  Google Scholar 

  16. Contos MJ, Choudhury J, Mills AS et al. The histologic spectrum of nonalcoholic fatty liver disease. Clin Liver Dis. 2004;8:481–500, vii.

  17. Kopec KL, Burns D. Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract.. 2011;26:565–576.

    Article  PubMed  Google Scholar 

  18. Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab.. 2013;39:16–26.

    Article  CAS  PubMed  Google Scholar 

  19. Takamura T, Misu H, Ota T, et al. Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J. 2012;59:745–763.

    Article  CAS  PubMed  Google Scholar 

  20. Sirli R, Sporea I, Tudora A, et al. Transient elastographic evaluation of subjects without known hepatic pathology: does age change the liver stiffness? J Gastrointestin Liver Dis.. 2009;18:57–60.

    PubMed  Google Scholar 

  21. Corpechot C, El Naggar A, Poupon R. Gender and liver: is the liver stiffness weaker in weaker sex? Hepatology. 2006;44:513–514.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SU, Kim JK, Park YN, et al. Discordance between liver biopsy and Fibroscan® in assessing liver fibrosis in chronic hepatitis b: risk factors and influence of necroinflammation. PLoS ONE. 2012;7:e32233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hourigan LF, Macdonald GA, Purdie D, et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology. 1999;29:1215–1219.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SU, Seo YS, Cheong JY, et al. Factors that affect the diagnostic accuracy of liver fibrosis measurement by Fibroscan in patients with chronic hepatitis B. Aliment Pharmacol Ther. 2010;32:498–505.

    Article  CAS  PubMed  Google Scholar 

  25. Chan HL, Wong GL, Choi PC, et al. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat.. 2009;16:36–44.

    Article  PubMed  Google Scholar 

  26. Das K, Sarkar R, Ahmed SM, et al. “Normal” liver stiffness measure (LSM) values are higher in both lean and obese individuals: a population-based study from a developing country. Hepatology. 2012;55:584–593.

    Article  PubMed  Google Scholar 

  27. Carvalhana S, Leitao J, Alves AC, et al. How good is controlled attenuation parameter and fatty liver index for assessing liver steatosis in general population: correlation with ultrasound. Liver Int. 2013. (Epub ahead of print). doi:10.1111/liv.12305.

  28. Yilmaz Y. Is nonalcoholic fatty liver disease the hepatic expression of the metabolic syndrome? World J Hepatol.. 2012;4:332–334.

    PubMed Central  PubMed  Google Scholar 

  29. Kim SU, Choi GH, Han WK, et al. What are ‘true normal’ liver stiffness values using FibroScan? A prospective study in healthy living liver and kidney donors in South Korea. Liver Int.. 2010;30:268–274.

    Article  CAS  PubMed  Google Scholar 

  30. Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48:835–847.

    Article  PubMed  Google Scholar 

  31. Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology. 2002;123:745–750.

    Article  PubMed  Google Scholar 

  32. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.

  33. Yilmaz Y, Yesil A, Gerin F, et al. Detection of hepatic steatosis using the controlled attenuation parameter: a comparative study with liver biopsy. Scand J Gastroenterol. 2014;49:611–616.

    Article  PubMed  Google Scholar 

  34. Castera L, Foucher J, Bernard PH, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51:828–835.

    PubMed  Google Scholar 

  35. Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011;54:1082–1090.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kim BK, Kim SU, Choi GH, et al. “Normal” liver stiffness values differ between men and women: a prospective study for healthy living liver and kidney donors in a native Korean population. J Gastroenterol Hepatol. 2012;27:781–788.

    Article  PubMed  Google Scholar 

  37. Hashimoto E, Tokushige K. Prevalence, gender, ethnic variations, and prognosis of NASH. J Gastroenterol. 2011;46:63–69.

    Article  PubMed  Google Scholar 

  38. Sogabe M, Okahisa T, Tsujigami K, et al. Visceral fat predominance is associated with non-alcoholic fatty liver disease in Japanese women with metabolic syndrome. Hepatol Res.. 2014;44:515–522.

    Article  CAS  PubMed  Google Scholar 

  39. Yoo HJ, Hwang SY, Cho GJ, et al. Association of glypican-4 with body fat distribution, insulin resistance, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2013;98:2897–2901.

    Article  CAS  PubMed  Google Scholar 

  40. Ulijaszek S, Schwekendiek D. Intercontinental differences in overweight of adopted Koreans in the United States and Europe. Econ Hum Biol.. 2013;11:345–350.

    Article  PubMed  Google Scholar 

  41. Wong VW, Vergniol J, Wong GL, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2012;107:1862–1871.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Up Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chon, Y.E., Jung, K.S., Kim, K.J. et al. Normal Controlled Attenuation Parameter Values: A Prospective Study of Healthy Subjects Undergoing Health Checkups and Liver Donors in Korea. Dig Dis Sci 60, 234–242 (2015). https://doi.org/10.1007/s10620-014-3293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3293-1

Keywords

Navigation