Digestive Diseases and Sciences

, Volume 60, Issue 1, pp 234–242 | Cite as

Normal Controlled Attenuation Parameter Values: A Prospective Study of Healthy Subjects Undergoing Health Checkups and Liver Donors in Korea

  • Young Eun Chon
  • Kyu Sik Jung
  • Kwang Joon Kim
  • Dong Jin Joo
  • Beom Kyung Kim
  • Jun Yong Park
  • Do Young Kim
  • Sang Hoon Ahn
  • Kwang-Hyub Han
  • Seung Up Kim
Original Article



The controlled attenuation parameter (CAP) is a noninvasive method of assessing hepatic steatosis. We defined the normal range of CAP values in healthy subjects and evaluated the associated factors.


CAP values were measured in a cohort of healthy subjects who were screened as living liver transplantation donors and those who underwent health checkups. Subjects with current or a history of chronic liver disease, abnormalities on liver-related laboratory tests, or fatty liver on ultrasonography or biopsy were excluded.


The mean age of the 264 recruited subjects (131 males and 133 females; 76 potential liver donors and 188 subjects who had undergone health checkups) was 49.2 years. The mean CAP value was 224.8 ± 38.7 dB/m (range 100.0–308.0 dB/m), and the range of normal CAP values (5th–95th percentiles) was 156.0–287.8 dB/m. The mean CAP value was significantly higher in the health checkup than in the potential liver donor group (227.5 ± 42.0 vs. 218.2 ± 28.3 dB/m, P = 0.040). CAP values did not differ significantly according to gender or age in either group (all P > 0.05). In a multivariate linear regression analysis, body mass index (β = 0.271, P = 0.024) and triglyceride levels (β = 0.348, P = 0.008) were found to be independently associated with CAP values.


We determined the normal range of CAP values and found that body mass index and triglyceride levels were associated with the CAP values of healthy subjects.


Controlled attenuation parameter Fatty liver Healthy subject Liver donor Normal value 



Controlled attenuation parameter


Non-alcoholic fatty liver disease


Non-alcoholic steatohepatitis


Liver stiffness value


Chronic liver disease


Body mass index


Hepatitis B virus surface antigen


Hepatitis C virus antibody


Alanine aminotransferase


Aspartate aminotransferase


Gamma glutamyl transpeptidase


Alkaline phosphatase


High-density lipoprotein


Low-density lipoprotein


Inter-quartile range


Conflict of interest



  1. 1.
    Farrell GC, Wong VW, Chitturi S. NAFLD in Asia-as common and important as in the West. Nat Rev Gastroenterol Hepatol.. 2013;10:307–318.PubMedCrossRefGoogle Scholar
  2. 2.
    Park SH. Current status of liver disease in Korea: nonalcoholic fatty liver disease. Korean J Hepatol.. 2009;15:S34–S39.PubMedCrossRefGoogle Scholar
  3. 3.
    Yilmaz Y. Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther. 2012;36:815–823.PubMedCrossRefGoogle Scholar
  4. 4.
    Barsic N, Lerotic I, Smircic-Duvnjak L, et al. Overview and developments in noninvasive diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:3945–3954.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Strauss S, Gavish E, Gottlieb P, et al. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol. 2007;189:W320–W323.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryan CK, Johnson LA, Germin BI, et al. One hundred consecutive hepatic biopsies in the workup of living donors for right lobe liver transplantation. Liver Transpl. 2002;8:1114–1122.PubMedCrossRefGoogle Scholar
  7. 7.
    Park SH, Kim PN, Kim KW, et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology. 2006;239:105–112.PubMedCrossRefGoogle Scholar
  8. 8.
    van Werven JR, Marsman HA, Nederveen AJ, et al. Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology. 2010;256:159–168.PubMedCrossRefGoogle Scholar
  9. 9.
    Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36:1825–1835.PubMedCrossRefGoogle Scholar
  10. 10.
    Karlas T, Petroff D, Garnov N, et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS ONE. 2014;9:e91987.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2014. (Epub ahead of print). doi: 10.1111/jgh.12557.
  12. 12.
    Chon YE, Jung KS, Kim SU, et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: a prospective study of a native Korean population. Liver Int.. 2014;34:102–109.PubMedCrossRefGoogle Scholar
  13. 13.
    Sasso M, Tengher-Barna I, Ziol M, et al. Novel controlled attenuation parameter for noninvasive assessment of steatosis using Fibroscan®: validation in chronic hepatitis C. J Viral Hepat.. 2012;19:244–253.PubMedCrossRefGoogle Scholar
  14. 14.
    Shen F, Zheng RD, Mi YQ, et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol. 2014;20:4702–4711.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yilmaz Y, Ergelen R, Akin H, et al. Noninvasive detection of hepatic steatosis in patients without ultrasonographic evidence of fatty liver using the controlled attenuation parameter evaluated with transient elastography. Eur J Gastroenterol Hepatol. 2013;25:1330–1334.PubMedCrossRefGoogle Scholar
  16. 16.
    Contos MJ, Choudhury J, Mills AS et al. The histologic spectrum of nonalcoholic fatty liver disease. Clin Liver Dis. 2004;8:481–500, vii.Google Scholar
  17. 17.
    Kopec KL, Burns D. Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract.. 2011;26:565–576.PubMedCrossRefGoogle Scholar
  18. 18.
    Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab.. 2013;39:16–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Takamura T, Misu H, Ota T, et al. Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J. 2012;59:745–763.PubMedCrossRefGoogle Scholar
  20. 20.
    Sirli R, Sporea I, Tudora A, et al. Transient elastographic evaluation of subjects without known hepatic pathology: does age change the liver stiffness? J Gastrointestin Liver Dis.. 2009;18:57–60.PubMedGoogle Scholar
  21. 21.
    Corpechot C, El Naggar A, Poupon R. Gender and liver: is the liver stiffness weaker in weaker sex? Hepatology. 2006;44:513–514.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim SU, Kim JK, Park YN, et al. Discordance between liver biopsy and Fibroscan® in assessing liver fibrosis in chronic hepatitis b: risk factors and influence of necroinflammation. PLoS ONE. 2012;7:e32233.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hourigan LF, Macdonald GA, Purdie D, et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology. 1999;29:1215–1219.PubMedCrossRefGoogle Scholar
  24. 24.
    Kim SU, Seo YS, Cheong JY, et al. Factors that affect the diagnostic accuracy of liver fibrosis measurement by Fibroscan in patients with chronic hepatitis B. Aliment Pharmacol Ther. 2010;32:498–505.PubMedCrossRefGoogle Scholar
  25. 25.
    Chan HL, Wong GL, Choi PC, et al. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat.. 2009;16:36–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Das K, Sarkar R, Ahmed SM, et al. “Normal” liver stiffness measure (LSM) values are higher in both lean and obese individuals: a population-based study from a developing country. Hepatology. 2012;55:584–593.PubMedCrossRefGoogle Scholar
  27. 27.
    Carvalhana S, Leitao J, Alves AC, et al. How good is controlled attenuation parameter and fatty liver index for assessing liver steatosis in general population: correlation with ultrasound. Liver Int. 2013. (Epub ahead of print). doi: 10.1111/liv.12305.
  28. 28.
    Yilmaz Y. Is nonalcoholic fatty liver disease the hepatic expression of the metabolic syndrome? World J Hepatol.. 2012;4:332–334.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kim SU, Choi GH, Han WK, et al. What are ‘true normal’ liver stiffness values using FibroScan? A prospective study in healthy living liver and kidney donors in South Korea. Liver Int.. 2010;30:268–274.PubMedCrossRefGoogle Scholar
  30. 30.
    Castera L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48:835–847.PubMedCrossRefGoogle Scholar
  31. 31.
    Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology. 2002;123:745–750.PubMedCrossRefGoogle Scholar
  32. 32.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.Google Scholar
  33. 33.
    Yilmaz Y, Yesil A, Gerin F, et al. Detection of hepatic steatosis using the controlled attenuation parameter: a comparative study with liver biopsy. Scand J Gastroenterol. 2014;49:611–616.PubMedCrossRefGoogle Scholar
  34. 34.
    Castera L, Foucher J, Bernard PH, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51:828–835.PubMedGoogle Scholar
  35. 35.
    Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011;54:1082–1090.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kim BK, Kim SU, Choi GH, et al. “Normal” liver stiffness values differ between men and women: a prospective study for healthy living liver and kidney donors in a native Korean population. J Gastroenterol Hepatol. 2012;27:781–788.PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto E, Tokushige K. Prevalence, gender, ethnic variations, and prognosis of NASH. J Gastroenterol. 2011;46:63–69.PubMedCrossRefGoogle Scholar
  38. 38.
    Sogabe M, Okahisa T, Tsujigami K, et al. Visceral fat predominance is associated with non-alcoholic fatty liver disease in Japanese women with metabolic syndrome. Hepatol Res.. 2014;44:515–522.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoo HJ, Hwang SY, Cho GJ, et al. Association of glypican-4 with body fat distribution, insulin resistance, and nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2013;98:2897–2901.PubMedCrossRefGoogle Scholar
  40. 40.
    Ulijaszek S, Schwekendiek D. Intercontinental differences in overweight of adopted Koreans in the United States and Europe. Econ Hum Biol.. 2013;11:345–350.PubMedCrossRefGoogle Scholar
  41. 41.
    Wong VW, Vergniol J, Wong GL, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2012;107:1862–1871.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Young Eun Chon
    • 1
    • 2
  • Kyu Sik Jung
    • 1
    • 2
  • Kwang Joon Kim
    • 1
    • 3
  • Dong Jin Joo
    • 4
  • Beom Kyung Kim
    • 1
    • 2
    • 5
  • Jun Yong Park
    • 1
    • 2
    • 5
  • Do Young Kim
    • 1
    • 2
    • 5
  • Sang Hoon Ahn
    • 1
    • 2
    • 5
    • 6
  • Kwang-Hyub Han
    • 1
    • 2
    • 5
    • 6
  • Seung Up Kim
    • 1
    • 2
    • 5
  1. 1.Department of Internal MedicineYonsei University College of MedicineSeoulKorea
  2. 2.Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
  3. 3.Institute of EndocrinologyYonsei University College of MedicineSeoulKorea
  4. 4.Department of SurgeryYonsei University College of MedicineSeoulKorea
  5. 5.Liver Cirrhosis Clinical Research CenterSeoulKorea
  6. 6.Brain Korea 21 Project of Medical ScienceSeoulKorea

Personalised recommendations