Digestive Diseases and Sciences

, Volume 59, Issue 3, pp 569–582 | Cite as

Gastritis Promotes an Activated Bone Marrow-Derived Mesenchymal Stem Cell with a Phenotype Reminiscent of a Cancer-Promoting Cell

  • Jessica M. Donnelly
  • Amy C. Engevik
  • Melinda Engevik
  • Michael A. Schumacher
  • Chang Xiao
  • Li Yang
  • Roger T. Worrell
  • Yana Zavros
Original Article



Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis.


The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype.


Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1Cre mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1Cre mice were paired to either an uninfected Vav-1Cre littermate or a BL/6 mouse inoculated with Helicobacter pylori.


GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression.


Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.


Cancer stem cell Sonic hedgehog TGFβ Helicobacter pylori 



Sonic hedgehog


Gastrin-deficient mouse model


C57BL/6 mice


Transforming growth factor beta

H. pylori

Helicobacter pylori



This work was supported by the American Cancer Society Research Scholar Award 119072-RSG-10-167-01-MPC (Y. Zavros), Albert J. Ryan Foundation Fellowship (J. Donnelly) and in part by the Digestive Health Center Cincinnati Children’s Medical Health Center (DHC: Bench to Bedside Research in Pediatric Digestive Disease) CHTF/SUB DK078392. We would like to acknowledge the assistance of Monica DeLay manager of the Research Flow Cytometry Core in the Division of Rheumatology at Cincinnati Children’s Hospital Medical Center, supported in part by NIH AR-47363. All flow cytometric data were acquired using equipment maintained by the Research Flow Cytometry Core in the Division of Rheumatology at Cincinnati Children’s Hospital Medical Center, supported in part by NIH AR-47363. We would also like to thank Dr. Linda Samuelson (Department of Molecular and Integrative Physiology, University of Michigan) for donating the gastrin-deficient mice.

Conflict of interest


Supplementary material

10620_2013_2927_MOESM1_ESM.tif (1.5 mb)
Supplementary material 1 (TIFF 1577 kb)
10620_2013_2927_MOESM2_ESM.tif (1.6 mb)
Supplementary material 2 (TIFF 1639 kb)
10620_2013_2927_MOESM3_ESM.tif (1.4 mb)
Supplementary material 3 (TIFF 1437 kb)
10620_2013_2927_MOESM4_ESM.tif (1.7 mb)
Supplementary material 4 (TIFF 1786 kb)


  1. 1.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.PubMedCrossRefGoogle Scholar
  2. 2.
    Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–272.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cao H, Xu W, Qian H, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009;274:61–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Houghton JSC, Nomura S, Rogers AB, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–1571.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang SS, Asfaha S, Okumura T, et al. Fibroblastic colony-forming unit bone marrow cells delay progression to gastric dysplasia in a helicobacter model of gastric tumorigenesis. Stem Cells. 2009;27:2301–2311.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Shibata W, Ariyama H, Westphalen C, et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut. 2013;62:192–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Dennler SAJ, Alexaki I, Li A, et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67:6981–6986.PubMedCrossRefGoogle Scholar
  8. 8.
    Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C, Peraldi P. Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells. 2009;27:703–713.PubMedCrossRefGoogle Scholar
  9. 9.
    Zavros Y, Eaton KA, Kang W, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005;24:2354–2366.PubMedCrossRefGoogle Scholar
  10. 10.
    Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and g-cell populations in mice. Gastroenterology. 2002;122:119–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;2:58–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Friis-Hansen L, Sundler F, Li Y, et al. Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol. 1998;274:G561–G568.PubMedGoogle Scholar
  13. 13.
    Castillo M, Martín-Orúe SM, Manzanilla EG, Badiola I, Martín M, Gasa J. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet Microbiol. 2006;114:165–170.PubMedCrossRefGoogle Scholar
  14. 14.
    Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for firmicutes and bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47:367–373.PubMedCrossRefGoogle Scholar
  15. 15.
    Barman M, Unold D, Shifley K, et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76:907–915.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative pcr assays. Appl Environ Microbiol. 2005;71:4117–4120.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Xiao C, Ogle SA, Schumacher MA, et al. Loss of parietal cell expression of sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology. 2010;138:550–561.PubMedCrossRefGoogle Scholar
  19. 19.
    Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem. 1999;72:570–585.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim J, Tang JY, Gong R, et al. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17:388–399.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee A, O’Rourke J, de Ungria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of helicobacter pylori infection: introducing the Sydney strain. Gastroenterology. 1997;112:1386–1397.PubMedCrossRefGoogle Scholar
  22. 22.
    Duyverman AM, Kohno M, Duda DG, Jain RK, Fukumura D. A transient parabiosis skin transplantation model in mice. Nature Protoc. 2012;7:763–770.CrossRefGoogle Scholar
  23. 23.
    Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–408.PubMedCrossRefGoogle Scholar
  24. 24.
    Pan Y, Bai CB, Joyner AL, Wang B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol. 2006;26:3365–3377.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100:423–434.PubMedCrossRefGoogle Scholar
  26. 26.
    Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S. Sonic hedgehog-induced activation of the Gli1 promoter is mediated by Gli3. J Biol Chem. 1999;274:8143–8152.PubMedCrossRefGoogle Scholar
  27. 27.
    DaCosta Byfield S, Major C, Laping NJ, Roberts AB. Sb-505124 is a selective inhibitor of transforming growth factor-beta type i receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65:744–752.PubMedCrossRefGoogle Scholar
  28. 28.
    De Gasperi R, Rocher AB, Sosa MA, et al. The IRG mouse: a two-color fluorescent reporter for assessing cre-mediated recombination and imaging complex cellular relationships in situ. Genesis. 2008;46:308–317.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    de Boer J, Williams A, Skavdis G, et al. Transgenic mice with hematopoietic and lymphoid specific expression of cre. Eur J Immunol. 2003;33:314–325.PubMedCrossRefGoogle Scholar
  30. 30.
    Rubio D, Garciab S, De la Cuevac T, Pazb MF, Lloydd AC, Bernadb A. Human mesenchymal stem cell transformation is associated with a mesenchymal–epithelial transition. Exp Cell Res. 2008;314:691–698.PubMedCrossRefGoogle Scholar
  31. 31.
    Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5331–5339.PubMedCrossRefGoogle Scholar
  32. 32.
    Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–4339.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Li HFX, Kovi RC, Jo Y, et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 2007;67:10889–10898.PubMedCrossRefGoogle Scholar
  34. 34.
    Miura M, Miura Y, Padilla-Nash HM, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095–1103.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Huso DL, Harrington J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy. 2005;7:509–519.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubio D, Garcia S, Paz MF, et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One. 2008;3:e1398.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Barnes EA, Kong M, Ollendorff V, Donoghue DJ. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J. 2001;20:2214–2223.PubMedCrossRefGoogle Scholar
  38. 38.
    Yoon JW, Kita Y, Frank DJ, et al. Gene expression profiling leads to identification of Gli1-binding elements in target genes and a role for multiple downstream pathways in Gli1-induced cell transformation. J Biol Chem. 2002;277:5548–5555.PubMedCrossRefGoogle Scholar
  39. 39.
    Warzecha JGS, Brüning C, Lindhorst E, Arabmothlagh M, Kurth A. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci. 2006;11:491–496.PubMedCrossRefGoogle Scholar
  40. 40.
    Dennler S, André J, Verrecchia F, Mauviel A. Cloning of the human Gli2 promoter: transcriptional activation by transforming growth factor-beta via Smad3/beta-catenin cooperation. J Biol Chem. 2009;284:31523–31531.PubMedCrossRefGoogle Scholar
  41. 41.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–789.PubMedCrossRefGoogle Scholar
  42. 42.
    Riobó NA, Lu K, Ai X, Haines GM, Emerson CPJ. Phosphoinositide 3-kinase and AKT are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA. 2006;103:4505–4510.PubMedCrossRefGoogle Scholar
  43. 43.
    Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene. 2005;24:5775–5789.PubMedCrossRefGoogle Scholar
  44. 44.
    Sneddon JB, Zhen HH, Montgomery K, et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA. 2006;103:14842–14847.PubMedCrossRefGoogle Scholar
  45. 45.
    Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying Gli1 target genes. Int J Cancer. 2009;124:109–119.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ye H, Cheng J, Tang Y, et al. Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Invest. 2012;30:513–518.PubMedCrossRefGoogle Scholar
  47. 47.
    Kabashima-Niibe A, Higuchi H, Takaishi H, et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013;104:157–164.PubMedCrossRefGoogle Scholar
  48. 48.
    Li GC, Ye QH, Dong QZ, Ren N, Jia HL, Qin LX. Mesenchymal stem cells seldomly fuse with hepatocellular carcinoma cells and are mainly distributed in the tumor stroma in mouse models. Oncol Rep. 2013;29:713–719.PubMedGoogle Scholar
  49. 49.
    Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide ll-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA. 2009;106:3806–3811.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jessica M. Donnelly
    • 1
  • Amy C. Engevik
    • 1
  • Melinda Engevik
    • 1
  • Michael A. Schumacher
    • 1
  • Chang Xiao
    • 2
  • Li Yang
    • 1
  • Roger T. Worrell
    • 1
  • Yana Zavros
    • 1
  1. 1.Department of Molecular and Cellular PhysiologyUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Department of Asthma ResearchCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations