Advertisement

Digestive Diseases and Sciences

, Volume 58, Issue 8, pp 2177–2186 | Cite as

Inulin-Type Fructans with Different Degrees of Polymerization Improve Lipid Metabolism but Not Glucose Metabolism in Rats Fed a High-Fat Diet Under Energy Restriction

  • Kyu-Ho Han
  • Hiroaki Tsuchihira
  • Yumi Nakamura
  • Ken-ichiro Shimada
  • Kiyoshi Ohba
  • Tsutomu Aritsuka
  • Hirokatsu Uchino
  • Hirohito Kikuchi
  • Michihiro Fukushima
Original Article

Abstract

Background

Inulin-type fructan ameliorates metabolic diseases associated with obesity in animals. However, relatively little information is available on the comparative effects of inulins with different degree of polymerization (DP) on the lipid or glucose metabolism.

Aim

The objective of this study was to investigate the effect of inulins with various DP on metabolic disorders associated with obesity in rats fed a high-fat diet under food restriction.

Methods

Rats were fed a high-fat diet supplemented with 5 % inulin-GR (Raftiline GR), inulin-Tokachi (Tokachi), or inulin-HP (Raftiline HP) without cellulose for 28 days at normal energy intakes or 14.5 % energy restriction.

Results

Under food restriction, the dietary inulin-Tokachi (mean DP 15) and -HP (mean DP 24), but not -GR (mean DP 10), reduced (p < 0.05) the serum cholesterol and triglyceride levels, and liver triglyceride concentration in rats, compared to the control diet. The cecal neutral steroid, bile acid, and propionate concentrations in the Tokachi and HP groups were higher (p < 0.05) than in the CONT group, and the cecal Bifidobacterium count in the Tokachi group was higher (p < 0.05) than in the other groups.

Conclusions

Findings suggest that, depending on DP, dietary supplementation with inulin (DP 15 or DP 24) in rats fed a high-fat diet, regardless of food intake, positively modulates lipid metabolism and fecal microbiota but not glucose metabolism.

Keywords

Inulin-type fructan Lipid and glucose metabolisms Food restriction Cecal fermentation High-fat diet Rats 

Notes

Acknowledgments

This work was supported by a grant from the program Cooperation of Innovative Technology and Advanced Research in the Evolution Area (CITY AREA, Development Stage) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflict of interest

None.

References

  1. 1.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880.PubMedCrossRefGoogle Scholar
  3. 3.
    Hsing AW, Sakoda LC, Chua S Jr. Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr. 2007;86:s843–s857.PubMedGoogle Scholar
  4. 4.
    Delzenne NM, Cani PD. A place for dietary fibre in the management of the metabolic syndrome. Curr Opin Clin Nutr Metab Care. 2005;8:636–640.PubMedCrossRefGoogle Scholar
  5. 5.
    Delzenne NM, Cani PD, Neyrinck A. Prebiotics and lipid metabolism. In: Versalovic J, Wilson M, eds. Therapeutic Microbiology: Probiotics and Related Strategies. Washington, DC: ASM Press; 2008:183–192.Google Scholar
  6. 6.
    Daubioul CA, Taper HS, De Wispelaere LD, Delzenne NM. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J Nutr. 2000;130:1314–1319.PubMedGoogle Scholar
  7. 7.
    Delmée E, Cani PD, Gual G, Knauf C, et al. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006;79:1007–1013.PubMedCrossRefGoogle Scholar
  8. 8.
    Cani PD, Daubioul CA, Reusens B, Remacle C, Catillon G, Delzenne NM. Involvement of endogenous glucagon-like peptide-1(7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol. 2005;185:457–465.PubMedCrossRefGoogle Scholar
  9. 9.
    Kok N, Roberfroid M, Delzenne N. Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabolism. 1996;45:1547–1550.PubMedCrossRefGoogle Scholar
  10. 10.
    Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res. 2005;13:1000–1007.PubMedCrossRefGoogle Scholar
  11. 11.
    Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr. 2004;92:521–526.PubMedCrossRefGoogle Scholar
  12. 12.
    Wada T, Sugatani J, Terada E, Ohguchi M, Miwa M. Physicochemical characterization and biological effects of inulin enzymatically synthesized from sucrose. J Agric Food Chem. 2005;53:1246–1253.PubMedCrossRefGoogle Scholar
  13. 13.
    Ito H, Takemura N, Sonoyama K, Kawagishi H, et al. Degree of polymerization of inulin-type fructans differentially affects number of lactic acid bacteria, intestinal immune functions, and immunoglobulin A secretion in the rat cecum. J Agric Food Chem. 2011;59:5771–5778.PubMedCrossRefGoogle Scholar
  14. 14.
    Kok NN, Taper HS, Delzenne NM. Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. J Appl Toxicol. 1998;18:47–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Bäckhed F, Ding H, Wang T, Hooper LV, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. 2004;101:15718–15723.PubMedCrossRefGoogle Scholar
  16. 16.
    Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, et al. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem. 2011;22:712–722.PubMedCrossRefGoogle Scholar
  17. 17.
    National Research Council. Guide for the Care and Use of Laboratory Animals, 1996. Available at http://newton.nap.edu/html/labrats/. Accessed June 20, 2010.
  18. 18.
    Folch J, Lees M, Sloane-Stanley JH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.PubMedGoogle Scholar
  19. 19.
    Matsubara Y, Sawabe A, Iizuka Y. Structures of new linoroid glycosides in lemon (Citrus limon Burm. f.) peelings. Agric Biol Chem. 1990;54:1143–1148.CrossRefGoogle Scholar
  20. 20.
    Grundy SM, Ahrens EH Jr, Miettinen TA. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J Lipid Res. 1965;6:397–410.PubMedGoogle Scholar
  21. 21.
    Daubioul C, Rousseau N, Demeure R, Gallez B, et al. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J Nutr. 2002;132:967–973.PubMedGoogle Scholar
  22. 22.
    Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab. 1996;81:4406–4413.PubMedCrossRefGoogle Scholar
  23. 23.
    Williams CM. Effects of inulin on lipid parameters in humans. J Nutr. 1999;129:1471S–1473S.PubMedGoogle Scholar
  24. 24.
    Sugatani J, Osabe M, Wada T, Yamakawa K, et al. Comparison of enzymatically synthesized inulin, resistant maltodextrin and clofibrate effects on biomarkers of metabolic disease in rats fed a high-fat and high-sucrose (cafeteria) diet. Eur J Nutr. 2008;47:192–200.PubMedCrossRefGoogle Scholar
  25. 25.
    Rault-Nania MH, Gueux E, Demougeot C, Demigné C, Rock E, Mazur A. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br J Nutr. 2006;96:840–844.PubMedCrossRefGoogle Scholar
  26. 26.
    Azorin-Ortuno M, Urbán C, Cerón JJ, Tecles F, et al. Effect of low inulin doses with different polymerisation degree on lipid metabolism, mineral absorption, and intestinal microbiota in rats with fat-supplemented diet. Food Chem. 2009;113:1058–1065.CrossRefGoogle Scholar
  27. 27.
    Levrat MA, Favier ML, Moundras C, Rémésy C, Demigné C, Morand C. Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J Nutr. 1994;124:531–538.PubMedGoogle Scholar
  28. 28.
    Parnell JA, Raylene A, Reimer RA. Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose–response study in JCR: LA-cp rats. Br J Nutr. 2010;103:1577–1584.PubMedCrossRefGoogle Scholar
  29. 29.
    Delzenne N, Williams C. Prebiotics and lipid metabolism. Curr Opin Lipidol. 2002;13:61–67.PubMedCrossRefGoogle Scholar
  30. 30.
    Reberfroid MB. Inulin-type fructans: functional food ingredients. J Nutr. 2007;137:2493S–2502S.Google Scholar
  31. 31.
    Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes. 2006;55:1484–1490.PubMedCrossRefGoogle Scholar
  32. 32.
    Illman RJ, Topping DL, Mclntosh GH, et al. Hypocholesterolaemic effects of dietary propionate: studies in whole animals and perfused rat liver. Ann Nutr Metab. 1988;32:97–107.CrossRefGoogle Scholar
  33. 33.
    Demigné C, Morand C, Levrat MA, Besson C, Moundras C, Rémésy C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr. 1995;74:209–219.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson JW, Story L, Sieling B, Chen WJ, Petro MS, Story J. Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Clin Nutr. 1984;40:1146–1155.PubMedGoogle Scholar
  35. 35.
    Levrat MA, Rémésy C, Demigné C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 1991;121:1730–1737.PubMedGoogle Scholar
  36. 36.
    Vos AP, Haarman M, Buco A, Govers M, et al. A specific prebiotic oligosaccharide mixture stimulates delayed-type hypersensitivity in a murine influenza vaccination model. Int Immunopharmacol. 2006;6:1277–1286.PubMedCrossRefGoogle Scholar
  37. 37.
    Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:1401–1412.PubMedGoogle Scholar
  38. 38.
    Causey JL, Feirtag JM, Gallaher DD, Tungland BC, Slavin JL. Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res. 2000;20:191–201.CrossRefGoogle Scholar
  39. 39.
    Forcheron F, Beylot M. Long-term administration of inulin-type fructans has no significant lipid-lowering effect in normolipidemic humans. Metabolism. 2007;56:1093–1098.PubMedCrossRefGoogle Scholar
  40. 40.
    Hwalla Baba N, Sawaya S, Torbay N, Habbal Z, Azar S, Hashim SA. High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord. 1999;23:1202–1206.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kyu-Ho Han
    • 1
  • Hiroaki Tsuchihira
    • 1
  • Yumi Nakamura
    • 1
  • Ken-ichiro Shimada
    • 1
  • Kiyoshi Ohba
    • 2
  • Tsutomu Aritsuka
    • 3
  • Hirokatsu Uchino
    • 3
  • Hirohito Kikuchi
    • 3
  • Michihiro Fukushima
    • 1
  1. 1.Department of Food ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Hokkaido Tokachi Area Regional Food Processing Technology CenterObihiroJapan
  3. 3.Research Center, Nippon Beet Sugar MFG. Co., Ltd.ObihiroJapan

Personalised recommendations