Digestive Diseases and Sciences

, Volume 58, Issue 7, pp 1830–1837 | Cite as

Helicobacter pylori CagA: A Critical Destroyer of the Gastric Epithelial Barrier

  • Jia Wu
  • Song Xu
  • Yongliang Zhu


The destruction of the integrity of the gastric epithelial barrier underlies the pathology of many gastric diseases, including gastric tumors. The Helicobacter pylori virulence factor CagA is one of the main destroyers of the gastric epithelial barrier. There are differences among CagA proteins that originate from different isolates. CagA translocated into the gastric epithelial cells causes significant changes in cell signaling pathways in phosphorylation-dependent and phosphorylation-independent manners, leading to cell morphological changes and host cell epithelial barrier injury, which lay the foundation for the occurrence of related diseases. As a newly identified pathogenic mechanism of CagA, miRNA is involved in the remodeling of the gastric epithelial barrier. Both the eradication of H. pylori infection and interventions against CagA-induced gastric epithelial barrier lesions may contribute to the prevention of the development of gastric tumors.


Helicobacter pylori CagA Gastric epithelial barrier Gastric diseases 



This work was supported by grants from the National Science of Foundation Committee of China (81071768, 31090361), the Natural Science of Foundation of Zhejiang Province (R2090074, Y2110246) and the Foundation of Scientific Technology Bureau of Zhejiang Province (2010C33118, 2011C23091).

Conflict of interest



  1. 1.
    McColl KE. The elegance of the gastric mucosal barrier: designed by nature for nature. Gut. 2012;61:787–788.PubMedCrossRefGoogle Scholar
  2. 2.
    Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol. 2006;169:1901–1909.PubMedCrossRefGoogle Scholar
  3. 3.
    Knust E, Bossinger O. Composition and formation of intercellular junctions in epithelial cells. Science. 2002;298:1955–1959.PubMedCrossRefGoogle Scholar
  4. 4.
    Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96:835–843.PubMedCrossRefGoogle Scholar
  5. 5.
    Timm S, Sailer M, Fuchs KH, Greiner A. First successful treatment of a primary high-grade gastric MALT lymphoma by eradication therapy for Helicobacter pylori. Gastroenterology. 2001;121:1025–1026.PubMedGoogle Scholar
  6. 6.
    Hatakeyama M. Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene. 2008;27:7047–7054.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsang YH, Lamb A, Romero-Gallo J, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29:5643–5650.PubMedCrossRefGoogle Scholar
  8. 8.
    Ye H, Liu H, Attygalle A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood. 2003;102:1012–1018.PubMedCrossRefGoogle Scholar
  9. 9.
    Goodwin CS. Duodenal ulcer, Campylobacter pylori, and the “leaking roof” concept. Lancet. 1988;2:1467–1469.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee KS, Kalantzis A, Jackson CB, et al. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3gamma via gastric STAT3 activation. PLoS ONE. 2012;7:e30786.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim SY, Lee YC, Kim HK, Blaser MJ. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol. 2006;8:97–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki H, Franceschi F, Nishizawa T, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection. Helicobacter. 2011;16:65–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Hatakeyama M. Helicobacter pylori and gastric carcinogenesis. J Gastroenterol. 2009;44:239–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287:1497–1500.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu WM, Hawley TS, Hawley RG, Qu CK. Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene. 2003;22:5995–6004.PubMedCrossRefGoogle Scholar
  16. 16.
    Mimuro H, Suzuki T, Nagai S, et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2007;2:250–263.PubMedCrossRefGoogle Scholar
  17. 17.
    Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 2003;300:1430–1434.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun YQ, Soderholm JD, Petersson F, Borch K. Long-standing gastric mucosal barrier dysfunction in Helicobacter pylori-induced gastritis in mongolian gerbils. Helicobacter. 2004;9:217–227.PubMedCrossRefGoogle Scholar
  19. 19.
    Terradot L, Waksman G. Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 2011;278:1213–1222.PubMedCrossRefGoogle Scholar
  20. 20.
    Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9:207–217.PubMedCrossRefGoogle Scholar
  21. 21.
    Higashi H, Tsutsumi R, Muto S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295:683–686.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol. 2006;26:261–276.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu YL, Zheng S, Du Q, Qian KD, Fang PC. Characterization of CagA variable region of Helicobacter pylori isolates from Chinese patients. World J Gastroenterol. 2005;11:880–884.PubMedGoogle Scholar
  24. 24.
    Naito M, Yamazaki T, Tsutsumi R, et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology. 2006;130:1181–1190.PubMedCrossRefGoogle Scholar
  25. 25.
    Higashi H, Yokoyama K, Fujii Y, et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem. 2005;280:23130–23137.PubMedCrossRefGoogle Scholar
  26. 26.
    Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol. 2002;43:971–980.PubMedCrossRefGoogle Scholar
  27. 27.
    Tammer I, Brandt S, Hartig R, Konig W, Backert S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology. 2007;132:1309–1319.PubMedCrossRefGoogle Scholar
  28. 28.
    Tegtmeyer N, Backert S. Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol. 2011;90:880–890.PubMedCrossRefGoogle Scholar
  29. 29.
    Mueller D, Tegtmeyer N, Brandt S, et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest. 2012;122:1553–1566.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M. Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem. 2003;278:3664–3670.PubMedCrossRefGoogle Scholar
  31. 31.
    Murata-Kamiya N, Kikuchi K, Hayashi T, Higashi H, Hatakeyama M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 2010;7:399–411.PubMedCrossRefGoogle Scholar
  32. 32.
    Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 2003;161:249–255.PubMedCrossRefGoogle Scholar
  33. 33.
    Bourzac KM, Botham CM, Guillemin K. Helicobacter pylori CagA induces AGS cell elongation through a cell retraction defect that is independent of Cdc42, Rac1, and Arp2/3. Infect Immun. 2007;75:1203–1213.PubMedCrossRefGoogle Scholar
  34. 34.
    Wroblewski LE, Peek RM Jr, Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010;23:713–739.PubMedCrossRefGoogle Scholar
  35. 35.
    Wroblewski LE, Shen L, Ogden S, et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology. 2009;136:236–246.PubMedCrossRefGoogle Scholar
  36. 36.
    Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell. 2002;10:745–755.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu Y, Zhong X, Zheng S, Du Q, Xu W. Transformed immortalized gastric epithelial cells by virulence factor CagA of Helicobacter pylori through Erk mitogen-activated protein kinase pathway. Oncogene. 2005;24:3886–3895.PubMedCrossRefGoogle Scholar
  38. 38.
    El-Etr SH, Mueller A, Tompkins LS, Falkow S, Merrell DS. Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. J Infect Dis. 2004;190:1516–1523.PubMedCrossRefGoogle Scholar
  39. 39.
    Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Franco AT, Israel DA, Washington MK, et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA. 2005;102:10646–10651.PubMedCrossRefGoogle Scholar
  41. 41.
    Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol. 2008;16:397–405.PubMedCrossRefGoogle Scholar
  42. 42.
    Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799–809.PubMedCrossRefGoogle Scholar
  43. 43.
    Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol. 2010;2:a000125.PubMedCrossRefGoogle Scholar
  44. 44.
    Oliveira MJ, Costa AM, Costa AC, et al. CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis. 2009;200:745–755.PubMedCrossRefGoogle Scholar
  45. 45.
    Murata-Kamiya N, Kurashima Y, Teishikata Y, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26:4617–4626.PubMedCrossRefGoogle Scholar
  46. 46.
    Nagy TA, Wroblewski LE, Wang D, et al. beta-Catenin and p120 mediate PPARdelta-dependent proliferation induced by Helicobacter pylori in human and rodent epithelia. Gastroenterology. 2011;141:553–564.PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 2005;202:1235–1247.PubMedCrossRefGoogle Scholar
  48. 48.
    Kurashima Y, Murata-Kamiya N, Kikuchi K, et al. Deregulation of beta-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int J Cancer. 2008;122:823–831.PubMedCrossRefGoogle Scholar
  49. 49.
    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480.PubMedCrossRefGoogle Scholar
  50. 50.
    Bebb JR, Leach L, Zaitoun A, et al. Effects of Helicobacter pylori on the cadherin-catenin complex. J Clin Pathol. 2006;59:1261–1266.PubMedCrossRefGoogle Scholar
  51. 51.
    Mutoh H, Sakurai S, Satoh K, et al. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res. 2004;64:7740–7747.PubMedCrossRefGoogle Scholar
  52. 52.
    Weydig C, Starzinski-Powitz A, Carra G, Lower J, Wessler S. CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity. Exp Cell Res. 2007;313:3459–3471.PubMedCrossRefGoogle Scholar
  53. 53.
    Yokoyama K, Higashi H, Ishikawa S, et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA. 2005;102:9661–9666.PubMedCrossRefGoogle Scholar
  54. 54.
    O’Connor PM, Lapointe TK, Jackson S, Beck PL, Jones NL, Buret AG. Helicobacter pylori activates calpain via toll-like receptor 2 to disrupt adherens junctions in human gastric epithelial cells. Infect Immun. 2011;79:3887–3894.PubMedCrossRefGoogle Scholar
  55. 55.
    Saadat I, Higashi H, Obuse C, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447:330–333.PubMedCrossRefGoogle Scholar
  56. 56.
    Lu HS, Saito Y, Umeda M, et al. Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci. 2008;99:2004–2011.PubMedGoogle Scholar
  57. 57.
    Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M. Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem. 2009;284:23024–23036.PubMedCrossRefGoogle Scholar
  58. 58.
    Zeaiter Z, Cohen D, Musch A, Bagnoli F, Covacci A, Stein M. Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell Microbiol. 2008;10:781–794.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–1495.PubMedCrossRefGoogle Scholar
  61. 61.
    Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect. 2009;15:806–812.PubMedCrossRefGoogle Scholar
  62. 62.
    Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–263.PubMedCrossRefGoogle Scholar
  63. 63.
    Koch M, Mollenkopf HJ, Klemm U, Meyer TF. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci USA. 2012;109:E1153–E1162.PubMedCrossRefGoogle Scholar
  64. 64.
    Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–4751.PubMedCrossRefGoogle Scholar
  65. 65.
    Li R, Liang J, Ni S, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7:51–63.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 2009;69:7135–7139.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohnishi N, Yuasa H, Tanaka S, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105:1003–1008.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhu Y, Jiang Q, Lou X, et al. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS ONE. 2012;7:e35147.PubMedCrossRefGoogle Scholar
  69. 69.
    Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4:688–694.PubMedCrossRefGoogle Scholar
  70. 70.
    Handa O, Naito Y, Yoshikawa T. CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol. 2007;73:1697–1702.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee IO, Kim JH, Choi YJ, et al. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 2010;285:16042–16050.PubMedCrossRefGoogle Scholar
  72. 72.
    Hirata Y, Maeda S, Mitsuno Y, et al. Helicobacter pylori CagA protein activates serum response element-driven transcription independently of tyrosine phosphorylation. Gastroenterology. 2002;123:1962–1971.PubMedCrossRefGoogle Scholar
  73. 73.
    Ishikawa S, Ohta T, Hatakeyama M. Stability of Helicobacter pylori CagA oncoprotein in human gastric epithelial cells. FEBS Lett. 2009;583:2414–2418.PubMedCrossRefGoogle Scholar
  74. 74.
    Tsugawa H, Suzuki H, Saya H, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 2012;12:764–777.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina

Personalised recommendations