Skip to main content

Advertisement

Log in

Orally Administered Phosphatidic Acids and Lysophosphatidic Acids Ameliorate Aspirin-Induced Stomach Mucosal Injury in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Recent investigations revealed that lysophosphatidic acid (LPA), a phospholipid with a growth factor-like activity, plays an important role in the integrity of the gastrointestinal tract epithelium.

Aim

This paper attempts to clarify the effect of orally administered phosphatidic acid (PA) and LPA on aspirin-induced gastric lesions in mice.

Materials and Methods

Phospholipids, a free fatty acid, a diacylglycerol and a triglyceride at 1 mM (5.7 μmol/kg body weight) or 0.1 mM were orally administered to mice 0.5 h before oral administration of aspirin (1.7 mmol/kg). The total length of lesions formed on the stomach wall was measured as a lesion index. Formation of LPA from PA in the mouse stomach was examined by in vitro (in stomach lavage fluid), ex vivo (in an isolated stomach) and in vivo (in the stomach of a living mouse) examinations of phospholipase activity.

Results

Palmitic acid, dioleoyl-glycerol, olive oil and lysophosphatidylcholine did not affect the aspirin-induced lesions. In contrast, phosphatidylcholine (1 mM), LPA (1 mM) and PA (0.1, 1 mM) significantly reduced the lesion index. Evidence for formation of LPA from PA in the stomach by gastric phospholipase A2 was obtained by in vitro, ex vivo and in vivo experiments. An LPA-specific receptor, LPA2, was found to be localized on the gastric surface-lining cells of mice.

Conclusion

Pretreatment with PA-rich diets may prevent nonsteroidal anti-inflammatory drug-induced stomach ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

CMC:

Carboxymethylcellulose

FFA:

Free fatty acid

HE:

Hematoxylin and eosin

GI:

Gastrointestinal

LPA:

Lysophosphatidic acid

LPC:

Lysophosphatidylcholine

mTOR:

Mammalian target of rapamycin

MALDI-TOF MS:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

NaDOC:

Sodium deoxycholate

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Prostaglandin

PI:

Phosphatidylinositol

TBS:

Tris-buffered saline

TG:

Triglyceride

THAP:

2,4,6-Trihydroxyacetophenone

TLC:

Thin-layer chromatography

PLA2 :

Phospholipase A2

PLD:

Phospholipase D

References

  1. Moolenaar WH, van Meeteren LA, Giepmans BNG. The ins and outs of lysophosphatidic acid signaling. BioEssays. 2004;26:870–881.

    Article  PubMed  CAS  Google Scholar 

  2. Tokumura A. Physiological significance of lysophospholipids that act on the lumen side of mammalian lower digestive tracts. J Health Sci. 2011;57:115–128.

    Article  CAS  Google Scholar 

  3. Sturm A, Sudermann T, Schulte K-M, Goebell H, Dignass AU. Modulation of intestinal epithelial wound healing in vitro and in vivo by lysophosphatidic acid. Gastroenterology. 1999;117:368–377.

    Article  PubMed  CAS  Google Scholar 

  4. Deng W, Balazs L, Wang D-A, van Middlesworth L, Tigyi G, Johnson LR. Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology. 2002;123:206–216.

    Article  PubMed  CAS  Google Scholar 

  5. Deng W, Shuyu E, Tsukahara R, et al. The lysophosphatidic acid type 2 receptor is required for protection against radiation-induced intestinal injury. Gastroenterology. 2007;132:1834–1851.

    Article  PubMed  CAS  Google Scholar 

  6. Adachi M, Horiuchi G, Ikematsu N, et al. Intragastrically administered lysophosphatidic acid protect against gastric ulcer in rats under water-immersion restraint stress. Dig Dis Sci. 2011;56:2252–2261.

    Article  PubMed  CAS  Google Scholar 

  7. Li C, Dandridge KS, Di A, et al. Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med. 2005;202:975–986.

    Article  PubMed  CAS  Google Scholar 

  8. Singla A, Dwivedi A, Saksena S, et al. Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl/OH exchange. Am J Physiol Gastrointest Liver Physiol. 2010;298:G182–G189.

    Article  PubMed  CAS  Google Scholar 

  9. Singla A, Kumar A, Priyamvada S, et al. LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3 K/AKT, and c-Fos-dependent pathway. Am J Physiol Gastrointest Liver Physiol. 2012;302:G618–G627.

    Article  PubMed  CAS  Google Scholar 

  10. Okudaira S, Yukiura H, Aoki J, et al. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010;92:698–706.

    Article  PubMed  CAS  Google Scholar 

  11. Sugiura T, Nakane S, Kishimoto S, Waku K, Yoshioka Y, Tokumura A. Lysophosphatidic acid, a growth factor-like lipid, in the saliva. J Lipid Res. 2002;43:2049–2055.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka T, Horiuchi G, Matsuoka M, et al. Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leaves. Biosci Biotechnol Biochem. 2009;73:1293–1300.

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka T, Kassai A, Ohmoto M, et al. Quantification of phosphatidic acid in foodstuffs using a thin-layer-chromatography-imaging technique. J Agric Food Chem. 2012;60:4156–4161.

    Article  PubMed  CAS  Google Scholar 

  14. Taha AS, McCloskey C, Prasada R, Bezlyak V, et al. Famotidine for the prevention of peptic ulcers and oesophagitis in patients taking low-dose aspirin (FAMOUS): a phase III, randomized, double-blind, placebo-controlled trial. Lancet. 2009;374:119–125.

    Article  PubMed  CAS  Google Scholar 

  15. Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev. 2008;88:1547–1565.

    Article  PubMed  CAS  Google Scholar 

  16. Musumba C, Pritchard DM, Pirmohamed M. Cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther. 2009;30:517–531.

    Article  PubMed  CAS  Google Scholar 

  17. Lichtenberger LM, Barron M, Marathi U. Association of phosphatidylcholine and NSAIDs as a novel strategy to reduce gastrointestinal toxicity. Drugs Today. 2009;45:877–890.

    PubMed  Google Scholar 

  18. Tomisato W, Tanaka K, Katsu T, et al. Membrane permeabilization by non-steroidal anti-inflammatory drugs. Biochem Biophys Res Commun. 2004;323:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  19. Maity P, Bindu S, Dey S, et al. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa. J Biol Chem. 2009;284:3058–3068.

    Article  PubMed  CAS  Google Scholar 

  20. Somasundaram S, Rafi S, Hayllar J, et al. Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID induced injury to the rat intestine. Gut. 1997;41:344–353.

    Article  PubMed  CAS  Google Scholar 

  21. Tomisato W, Tsutsumi S, Hoshino T, et al. Role of direct cytotoxic effects of NSAIDs in the induction of gastric lesions. Biochem Pharmacol. 2004;67:575–585.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka T, Tsutsui H, Hirano K, Koike T, Tokumura A, Satouchi K. Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate-capture molecule. J Lipid Res. 2004;45:2145–2150.

    Article  PubMed  CAS  Google Scholar 

  23. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.

    Article  PubMed  CAS  Google Scholar 

  24. Chalvardjian A, Rudnicki E. Determination of lipid phosphorus in the nanomolar range. Anal Biochem. 1970;36:225–230.

    Article  PubMed  CAS  Google Scholar 

  25. Inoue M, Adachi M, Shimizu Y, Tsutsumi T, Tokumura A. Comparison of lysophospholipid levels in rat feces with those in a standard chow. J Agric Food Chem. 2011;59:7062–7067.

    Article  PubMed  CAS  Google Scholar 

  26. Morishige J, Urikura M, Takagi H, et al. A clean-up technology for the simultaneous determination of lysophosphatidic acid and sphingosine-1-phosphate by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a phosphate-capture molecule, Phos-tag. Rapid Commun Mass Spectrom. 2010;24:1075–1084.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka K, Tomisato W, Hoshino T, et al. Involvement of intracellular Ca2+ levels in nonsteroidal anti-inflammatory drug-induced apoptosis. J Biol Chem. 2005;280:31059–31067.

    Article  PubMed  CAS  Google Scholar 

  28. Dunjic BS, Axelson J, Ar’rajab A, Larsson K, Bengmark S. Gastroprotective capacity of exogenous phosphatidylcholine in experimentally induced chronic gastric ulcers in rats. Scand J Gastroenterol. 1993;28:89–94.

    Article  PubMed  CAS  Google Scholar 

  29. Holm BA, Keicher L, Liu M, Sokolowski J, Enhorning G. Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol. 1991;71:317–321.

    PubMed  CAS  Google Scholar 

  30. Lichtenberger LM, Wang Z-M, Romero JJ, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nature Med. 1995;1:154–158.

    Article  PubMed  CAS  Google Scholar 

  31. He D, Natarajan V, Stern R, et al. Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E2 release via C/EBP β in human bronchial epithelial cells. Biochem J. 2008;412:153–162.

    Article  PubMed  CAS  Google Scholar 

  32. Murph MM, Liu W, Yu S, et al. Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS ONE. 2009;4:e5583.

    Article  PubMed  Google Scholar 

  33. Tojo H, Ying Z, Okamoto M. Purification and characterization of guinea pig gastric phospholipase A2 of the pancreatic type. Eur J Biochem. 1993;215:81–90.

    Article  PubMed  CAS  Google Scholar 

  34. Uthe JF, Magee WL. Phospholipase A2: action on purified phospholipids as affected by deoxycholate and divalent cations. Can J Biochem. 1971;49:776–784.

    Article  PubMed  CAS  Google Scholar 

  35. Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta. 2009;1791:949–955.

    Article  PubMed  CAS  Google Scholar 

  36. Cheney G. Rapid healing of peptic ulcers in patients receiving fresh cabbage juice. Calif Med. 1949;70:10–15.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan (21580141) and by a grant from the Kiei-kai Research Foundation in 2011.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Tanaka.

Additional information

The fatty acyl moieties of lipids are designated in terms of the number of carbon atoms and double bonds: 16:0, palmitoyl group; 18:1, oleoyl group; 18:2, linoleoyl group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Morito, K., Kinoshita, M. et al. Orally Administered Phosphatidic Acids and Lysophosphatidic Acids Ameliorate Aspirin-Induced Stomach Mucosal Injury in Mice. Dig Dis Sci 58, 950–958 (2013). https://doi.org/10.1007/s10620-012-2475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2475-y

Keywords

Navigation