Digestive Diseases and Sciences

, Volume 58, Issue 4, pp 959–969 | Cite as

Preclinical Efficacy of Melatonin to Reduce Methotrexate-Induced Oxidative Stress and Small Intestinal Damage in Rats

  • Viswa Kalyan Kolli
  • Premila Abraham
  • Bina Isaac
  • N. Kasthuri
Original Article



Methotrexate is widely used as a chemotherapeutic agent for leukemia and other malignancies. The efficacy of this drug is often limited by mucositis and intestinal injury, which are the major causes of morbidity in children and adults.


The present study investigates whether melatonin, a powerful antioxidant, could have a protective effect.


Rats were pretreated with melatonin (20 and 40 mg/kg body weight) daily 1 h before methotrexate (7 mg/kg body weight) administration for three consecutive days. After the final dose of methotrexate, the rats were sacrificed and the small intestine was used for light microscopy and biochemical assays. Intestinal homogenates were used for assay of oxidative stress parameters malondialdehyde and protein carbonyl content, and myeloperoxidase activity, a marker of neutrophil infiltration as well as for the activities of the antioxidant enzymes.


Pretreatment with melatonin had a dose-dependent protective effect on methotrexate (MTX)-induced alterations in small intestinal morphology. Morphology was saved to some extent with 20 mg melatonin pretreatment and near normal morphology was achieved with 40 mg melatonin pretreatment. Biochemically, pretreatment with melatonin significantly attenuated MTX-induced oxidative stress (P < 0.01 for MDA, P < 0.001 for protein carbonyl content) and restored the activities of the antioxidant enzymes (glutathione reductase P < 0.05, superoxide dismutase P < 0.01).


The results of the present study demonstrate that supplementation by exogenous melatonin significantly reduces MTX-induced small intestinal damage, indicating that it may be beneficial in ameliorating MTX-induced enteritis in humans.


Methotrexate Melatonin Small intestinal damage Oxidative stress Rat 



The authors acknowledge the Council for Scientific and Industrial Research (CSIR), New Delhi for the financial support for the study. Mr. Viswa Kalyan Kolli is a senior research fellow on the present study.

Conflict of interest



  1. 1.
    da Fonseca MA, Casamassimo P. Old drugs, new uses. Pediatr Dent. 2011;33:67–74. (review).PubMedGoogle Scholar
  2. 2.
    Maiguma T, Hayashi Y, Ueshima S, Kaji H, Egawa T, Chayama K. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int J Clin Pharmacol Ther. 2008;46:584–590.PubMedGoogle Scholar
  3. 3.
    Ishaq M, Muhammad JS, Hameed K, Mirza AI. Leflunomide or methotrexate? Comparison of clinical efficacy and safety in low socio-economic rheumatoid arthritis patients. Mod Rheumatol. 2011;21:375–380.PubMedCrossRefGoogle Scholar
  4. 4.
    Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol. 2004;39:1119–1127.PubMedCrossRefGoogle Scholar
  5. 5.
    Phillips DC, Woollard KJ, Griffiths HR. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol. 2003;138:501–511.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang CC, Hsu PC, Hung YC, Liao YF, Liu CC, Hour CT. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis. 2005;10:895–907.CrossRefGoogle Scholar
  7. 7.
    Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T. Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol. 2010;65:1117–1123.PubMedCrossRefGoogle Scholar
  8. 8.
    Kolli VK, Abraham P, Isaac B. Alteration in antioxidant defense mechanisms in the small intestines of methotrexate treated rat may contribute to its gastrointestinal toxicity. Cancer Therapy. 2007;5:501–510.Google Scholar
  9. 9.
    Ciralik H, Bulbuloglu E, Cetinkaya A, Kurutas EB, Celik M, Polat A. Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mt Sinai J Med. 2006;73:1086–1092.PubMedGoogle Scholar
  10. 10.
    Yuncu M, Eralp A, Koruk M, Sari I, Bagci C, Inaloz S. Effect of vitamin A against methotrexate-induced damage to the small intestine in rats. Med Princ Pract. 2004;13:346–352.PubMedCrossRefGoogle Scholar
  11. 11.
    Yüncü M, Eralp A, Celik A. Effect of aged garlic extract against methotrexate-induced damage to the small intestine in rats. Phytother Res. 2006;20:504–510.PubMedCrossRefGoogle Scholar
  12. 12.
    Somi MH, Hajipour B, Abad GD, et al. Protective role of lipoic acid on methotrexate-induced intestinal damage in rabbit model. Indian J Gastroenterol. 2011;30:38–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J Pineal Res. 2002;32:225–230.PubMedCrossRefGoogle Scholar
  14. 14.
    Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch Toxicol. 2001;75:88–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Hsu C, Han B, Liu M, Yeh C, Casida JE. Phosphine-induced oxidative damage in rats: attenuation by melatonin. Free Radic Biol Med. 2000;28:636–642.PubMedCrossRefGoogle Scholar
  16. 16.
    Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A: Mol Integr Physiol. 2003;135:539–547.CrossRefGoogle Scholar
  17. 17.
    Reiter RJ, Tan DX, Mayo JC. Neurally-mediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. J Physio Pharm. 2003;54:113–125.Google Scholar
  18. 18.
    Sewerynek E, Reiter RJ, Melchiorri D. Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology. 1996;43:898–905.PubMedGoogle Scholar
  19. 19.
    Messner M, Huether G, Lorf T. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci. 2001;69:543–551.PubMedCrossRefGoogle Scholar
  20. 20.
    Konturek SJ, Konturek PC, Brzozowska I. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol. 2007;58:381–405.PubMedGoogle Scholar
  21. 21.
    Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia. 1993;49:665–670.PubMedCrossRefGoogle Scholar
  22. 22.
    Stefulj J, Hörtner M, Ghosh M. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30:243–247.PubMedCrossRefGoogle Scholar
  23. 23.
    Bubenik GA, Pang SF, Cockshut JR. Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep. J Pineal Res. 2000;28:9–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Reiter RJ, Tan DX. What constitutes a physiological concentration of melatonin? J Pineal Res. 2003;34:79–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Tan DX, Manchester LC, Reiter RJ, et al. High physiological levels in the bile of mammals. Life Sci. 1999;65:2523–2529.PubMedCrossRefGoogle Scholar
  26. 26.
    Kvetnoy IM, Ingel IE, Kvetnaia TV, et al. Gastrointestinal melatonin: cellular identification and biological role. Neuro Endocrinol Lett. 2002;23:121–132.PubMedGoogle Scholar
  27. 27.
    Lee PPN, Pang SF. Melatonin and its receptors in the gastrointestinal tract. Biol Signals. 1993;2:181–193.PubMedCrossRefGoogle Scholar
  28. 28.
    Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin nature is most versatile biological signal? FEBS J. 2006;273:2813–2838.PubMedCrossRefGoogle Scholar
  29. 29.
    Tan DX, Manchester LC, Reiter RJ. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–620.PubMedCrossRefGoogle Scholar
  30. 30.
    Hirata F, Hayaishi O, Tokuyama T, Seno S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem. 1974;249:1311–1313.PubMedGoogle Scholar
  31. 31.
    Jahovic N, Cevik H, Sehirli AO. Melatonin prevents methotrexate induced hepatorenal oxidative injury in rats. J Pineal Res. 2003;34:282–287.PubMedCrossRefGoogle Scholar
  32. 32.
    Ucar M, Korkmaz A, Reiter RJ. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett. 2007;173:124–131.PubMedCrossRefGoogle Scholar
  33. 33.
    Reiter RJ, Tan DX, Maldonado MD. Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res. 2005;39:215–216.PubMedCrossRefGoogle Scholar
  34. 34.
    Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007;54:1–9.PubMedGoogle Scholar
  35. 35.
    Rodriguez C. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetes induced oxidative stress in rabbits. J Pineal Res. 2006;40:168–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Tan DX. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–197.PubMedCrossRefGoogle Scholar
  38. 38.
    Costa EJX, Lopes RH, Lamy-Freund MT. Solubility of pure bilayers to melatonin. J Pineal Res. 1995;19:123–126.PubMedCrossRefGoogle Scholar
  39. 39.
    Seabra ML, Bignotto M, Pinto LR Jr, Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res. 2000;29:193–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Aydin M, Canpolat S, Kuloğlu T, Yasar A, Colakoglu N, Kelestimur H. Effects of pinealectomy and exogenous melatonin on ghrelin and peptide YY in gastrointestinal system and neuropeptide Y in hypothalamic arcuate nucleus: immunohistochemical studies in male rats. Regul Pept. 2008;146:197–203.PubMedCrossRefGoogle Scholar
  41. 41.
    Reiter RJ. Melatonin: clinical relevance. Best Pract Res Clin Endocrinol Metab. 2003;17:273–285.PubMedCrossRefGoogle Scholar
  42. 42.
    Huether G, Poegeller G, Reimer R, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci. 1992;51:945–953.PubMedCrossRefGoogle Scholar
  43. 43.
    Sener G, Jahovic N, Tosun O, Atasoy BM, Yegen BC. Melatonin ameliorates ionizing radiation—induced oxidative organ damage in rats. Life Sci. 2003;74:563–572.PubMedCrossRefGoogle Scholar
  44. 44.
    Al-Ghoul WM, Abu-Shaqra S, Park BG, Fazal N. Melatonin plays a protective role in postburn rodent gut pathophysiology. Int J Biol Sci. 2010;6:282–293.PubMedCrossRefGoogle Scholar
  45. 45.
    Gao F, Ueda S, Horie T. Effect of a synthetic analog of prostaglandin E1 on the intestinal mucosa of methotrexate-treated rats. Anticancer Res. 2001;21:1913–1917.PubMedGoogle Scholar
  46. 46.
    Sener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Yeğen BC. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur J Pharmacol. 2006;542:170–178.PubMedCrossRefGoogle Scholar
  47. 47.
    Sener G, Ekşioğlu-Demiralp E, Cetiner M, et al. L-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol. 2006;22:47–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Konturek SJ, Konturek PC, Brzozowski T. Melatonin in gastroprotection against stress-induced acute gastric lesions and in healing of chronic gastric ulcers. J Physiol Pharmacol. 2006;57:51–66. (review).Google Scholar
  49. 49.
    Galijasevic S, Abdulhamid I, Abu-Soud HM. Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry. 2008;47:2668–2677.PubMedCrossRefGoogle Scholar
  50. 50.
    Li JH. Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm. 2005;2005:185–193.PubMedCrossRefGoogle Scholar
  51. 51.
    Mayo JC, Sainz RM, Tan DX, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxy-kynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–149.PubMedCrossRefGoogle Scholar
  52. 52.
    Rodríguez-Reynoso S, Leal C, Portilla-de Buen E, Castillo JC, Ramos-Solano F. Melatonin ameliorates renal ischemia/reperfusion injury. J Surg Res. 2004;116:242–247.PubMedCrossRefGoogle Scholar
  53. 53.
    Alarcón de la Lastra C, Motilva V, Martín MJ, et al. Protective effect of melatonin on indomethacin-induced gastric injury in rats. J Pineal Res. 1999;26:101–107.PubMedCrossRefGoogle Scholar
  54. 54.
    Cuzzocrea S, Mazzon E, Serraino I, Lepore V, Terranova ML, Ciccolo A. Melatonin reduces dinitrobenzene sulfonic acid-induced colitis. J Pineal Res. 2001;30:1–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Konturek PC, Konturek SJ, Brzozowski T, et al. Gastroprotective activity of melatonin and its precursor, l-tryptophan, against stress-induced and ischaemia-induced lesions is mediated by scavenge of oxygen radicals. Scand J Gastroenterol. 1997;32:433–438.PubMedCrossRefGoogle Scholar
  56. 56.
    Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 1995;9:526–533.PubMedGoogle Scholar
  57. 57.
    Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64:517–526.PubMedCrossRefGoogle Scholar
  58. 58.
    Kedziora-Kornatowska K. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J Pineal Res. 2008;45:312–317.PubMedCrossRefGoogle Scholar
  59. 59.
    Tamura H. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–287.PubMedCrossRefGoogle Scholar
  60. 60.
    Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336:186–195.PubMedCrossRefGoogle Scholar
  61. 61.
    Kadoma Y, Fujisawa S. Radical-scavenging activity of melatonin, either alone or in combination with vitamin E, ascorbate or 2-mercaptoethanol as co-antioxidants, using the induction period method. In Vivo. 2011;25:49–53.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Viswa Kalyan Kolli
    • 1
  • Premila Abraham
    • 1
  • Bina Isaac
    • 2
  • N. Kasthuri
    • 1
  1. 1.Department of BiochemistryChristian Medical CollegeBagayam, VelloreIndia
  2. 2.Department of AnatomyChristian Medical CollegeBagayam, VelloreIndia

Personalised recommendations