Skip to main content

Advertisement

Log in

Preclinical Efficacy of Melatonin to Reduce Methotrexate-Induced Oxidative Stress and Small Intestinal Damage in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Methotrexate is widely used as a chemotherapeutic agent for leukemia and other malignancies. The efficacy of this drug is often limited by mucositis and intestinal injury, which are the major causes of morbidity in children and adults.

Aim

The present study investigates whether melatonin, a powerful antioxidant, could have a protective effect.

Method

Rats were pretreated with melatonin (20 and 40 mg/kg body weight) daily 1 h before methotrexate (7 mg/kg body weight) administration for three consecutive days. After the final dose of methotrexate, the rats were sacrificed and the small intestine was used for light microscopy and biochemical assays. Intestinal homogenates were used for assay of oxidative stress parameters malondialdehyde and protein carbonyl content, and myeloperoxidase activity, a marker of neutrophil infiltration as well as for the activities of the antioxidant enzymes.

Result

Pretreatment with melatonin had a dose-dependent protective effect on methotrexate (MTX)-induced alterations in small intestinal morphology. Morphology was saved to some extent with 20 mg melatonin pretreatment and near normal morphology was achieved with 40 mg melatonin pretreatment. Biochemically, pretreatment with melatonin significantly attenuated MTX-induced oxidative stress (P < 0.01 for MDA, P < 0.001 for protein carbonyl content) and restored the activities of the antioxidant enzymes (glutathione reductase P < 0.05, superoxide dismutase P < 0.01).

Conclusion

The results of the present study demonstrate that supplementation by exogenous melatonin significantly reduces MTX-induced small intestinal damage, indicating that it may be beneficial in ameliorating MTX-induced enteritis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. da Fonseca MA, Casamassimo P. Old drugs, new uses. Pediatr Dent. 2011;33:67–74. (review).

    PubMed  Google Scholar 

  2. Maiguma T, Hayashi Y, Ueshima S, Kaji H, Egawa T, Chayama K. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int J Clin Pharmacol Ther. 2008;46:584–590.

    PubMed  CAS  Google Scholar 

  3. Ishaq M, Muhammad JS, Hameed K, Mirza AI. Leflunomide or methotrexate? Comparison of clinical efficacy and safety in low socio-economic rheumatoid arthritis patients. Mod Rheumatol. 2011;21:375–380.

    Article  PubMed  CAS  Google Scholar 

  4. Miyazono Y, Gao F, Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol. 2004;39:1119–1127.

    Article  PubMed  CAS  Google Scholar 

  5. Phillips DC, Woollard KJ, Griffiths HR. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol. 2003;138:501–511.

    Article  PubMed  CAS  Google Scholar 

  6. Huang CC, Hsu PC, Hung YC, Liao YF, Liu CC, Hour CT. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis. 2005;10:895–907.

    Article  CAS  Google Scholar 

  7. Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T. Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol. 2010;65:1117–1123.

    Article  PubMed  CAS  Google Scholar 

  8. Kolli VK, Abraham P, Isaac B. Alteration in antioxidant defense mechanisms in the small intestines of methotrexate treated rat may contribute to its gastrointestinal toxicity. Cancer Therapy. 2007;5:501–510.

    Google Scholar 

  9. Ciralik H, Bulbuloglu E, Cetinkaya A, Kurutas EB, Celik M, Polat A. Effects of N-acetylcysteine on methotrexate-induced small intestinal damage in rats. Mt Sinai J Med. 2006;73:1086–1092.

    PubMed  Google Scholar 

  10. Yuncu M, Eralp A, Koruk M, Sari I, Bagci C, Inaloz S. Effect of vitamin A against methotrexate-induced damage to the small intestine in rats. Med Princ Pract. 2004;13:346–352.

    Article  PubMed  Google Scholar 

  11. Yüncü M, Eralp A, Celik A. Effect of aged garlic extract against methotrexate-induced damage to the small intestine in rats. Phytother Res. 2006;20:504–510.

    Article  PubMed  Google Scholar 

  12. Somi MH, Hajipour B, Abad GD, et al. Protective role of lipoic acid on methotrexate-induced intestinal damage in rabbit model. Indian J Gastroenterol. 2011;30:38–40.

    Article  PubMed  Google Scholar 

  13. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J Pineal Res. 2002;32:225–230.

    Article  PubMed  CAS  Google Scholar 

  14. Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch Toxicol. 2001;75:88–96.

    Article  PubMed  CAS  Google Scholar 

  15. Hsu C, Han B, Liu M, Yeh C, Casida JE. Phosphine-induced oxidative damage in rats: attenuation by melatonin. Free Radic Biol Med. 2000;28:636–642.

    Article  PubMed  CAS  Google Scholar 

  16. Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A: Mol Integr Physiol. 2003;135:539–547.

    Article  Google Scholar 

  17. Reiter RJ, Tan DX, Mayo JC. Neurally-mediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. J Physio Pharm. 2003;54:113–125.

    Google Scholar 

  18. Sewerynek E, Reiter RJ, Melchiorri D. Oxidative damage in the liver induced by ischemia-reperfusion: protection by melatonin. Hepatogastroenterology. 1996;43:898–905.

    PubMed  CAS  Google Scholar 

  19. Messner M, Huether G, Lorf T. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci. 2001;69:543–551.

    Article  PubMed  CAS  Google Scholar 

  20. Konturek SJ, Konturek PC, Brzozowska I. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol. 2007;58:381–405.

    PubMed  CAS  Google Scholar 

  21. Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia. 1993;49:665–670.

    Article  PubMed  CAS  Google Scholar 

  22. Stefulj J, Hörtner M, Ghosh M. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. J Pineal Res. 2001;30:243–247.

    Article  PubMed  CAS  Google Scholar 

  23. Bubenik GA, Pang SF, Cockshut JR. Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep. J Pineal Res. 2000;28:9–15.

    Article  PubMed  CAS  Google Scholar 

  24. Reiter RJ, Tan DX. What constitutes a physiological concentration of melatonin? J Pineal Res. 2003;34:79–80.

    Article  PubMed  CAS  Google Scholar 

  25. Tan DX, Manchester LC, Reiter RJ, et al. High physiological levels in the bile of mammals. Life Sci. 1999;65:2523–2529.

    Article  PubMed  CAS  Google Scholar 

  26. Kvetnoy IM, Ingel IE, Kvetnaia TV, et al. Gastrointestinal melatonin: cellular identification and biological role. Neuro Endocrinol Lett. 2002;23:121–132.

    PubMed  CAS  Google Scholar 

  27. Lee PPN, Pang SF. Melatonin and its receptors in the gastrointestinal tract. Biol Signals. 1993;2:181–193.

    Article  PubMed  CAS  Google Scholar 

  28. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin nature is most versatile biological signal? FEBS J. 2006;273:2813–2838.

    Article  PubMed  CAS  Google Scholar 

  29. Tan DX, Manchester LC, Reiter RJ. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun. 1998;253:614–620.

    Article  PubMed  CAS  Google Scholar 

  30. Hirata F, Hayaishi O, Tokuyama T, Seno S. In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem. 1974;249:1311–1313.

    PubMed  CAS  Google Scholar 

  31. Jahovic N, Cevik H, Sehirli AO. Melatonin prevents methotrexate induced hepatorenal oxidative injury in rats. J Pineal Res. 2003;34:282–287.

    Article  PubMed  CAS  Google Scholar 

  32. Ucar M, Korkmaz A, Reiter RJ. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett. 2007;173:124–131.

    Article  PubMed  CAS  Google Scholar 

  33. Reiter RJ, Tan DX, Maldonado MD. Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res. 2005;39:215–216.

    Article  PubMed  CAS  Google Scholar 

  34. Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol. 2007;54:1–9.

    PubMed  CAS  Google Scholar 

  35. Rodriguez C. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetes induced oxidative stress in rabbits. J Pineal Res. 2006;40:168–176.

    Article  PubMed  CAS  Google Scholar 

  37. Tan DX. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2:181–197.

    Article  PubMed  CAS  Google Scholar 

  38. Costa EJX, Lopes RH, Lamy-Freund MT. Solubility of pure bilayers to melatonin. J Pineal Res. 1995;19:123–126.

    Article  PubMed  CAS  Google Scholar 

  39. Seabra ML, Bignotto M, Pinto LR Jr, Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res. 2000;29:193–200.

    Article  PubMed  CAS  Google Scholar 

  40. Aydin M, Canpolat S, Kuloğlu T, Yasar A, Colakoglu N, Kelestimur H. Effects of pinealectomy and exogenous melatonin on ghrelin and peptide YY in gastrointestinal system and neuropeptide Y in hypothalamic arcuate nucleus: immunohistochemical studies in male rats. Regul Pept. 2008;146:197–203.

    Article  PubMed  CAS  Google Scholar 

  41. Reiter RJ. Melatonin: clinical relevance. Best Pract Res Clin Endocrinol Metab. 2003;17:273–285.

    Article  PubMed  CAS  Google Scholar 

  42. Huether G, Poegeller G, Reimer R, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci. 1992;51:945–953.

    Article  PubMed  CAS  Google Scholar 

  43. Sener G, Jahovic N, Tosun O, Atasoy BM, Yegen BC. Melatonin ameliorates ionizing radiation—induced oxidative organ damage in rats. Life Sci. 2003;74:563–572.

    Article  PubMed  CAS  Google Scholar 

  44. Al-Ghoul WM, Abu-Shaqra S, Park BG, Fazal N. Melatonin plays a protective role in postburn rodent gut pathophysiology. Int J Biol Sci. 2010;6:282–293.

    Article  PubMed  Google Scholar 

  45. Gao F, Ueda S, Horie T. Effect of a synthetic analog of prostaglandin E1 on the intestinal mucosa of methotrexate-treated rats. Anticancer Res. 2001;21:1913–1917.

    PubMed  CAS  Google Scholar 

  46. Sener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Yeğen BC. Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur J Pharmacol. 2006;542:170–178.

    Article  PubMed  CAS  Google Scholar 

  47. Sener G, Ekşioğlu-Demiralp E, Cetiner M, et al. L-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol. 2006;22:47–60.

    Article  PubMed  CAS  Google Scholar 

  48. Konturek SJ, Konturek PC, Brzozowski T. Melatonin in gastroprotection against stress-induced acute gastric lesions and in healing of chronic gastric ulcers. J Physiol Pharmacol. 2006;57:51–66. (review).

    Google Scholar 

  49. Galijasevic S, Abdulhamid I, Abu-Soud HM. Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry. 2008;47:2668–2677.

    Article  PubMed  CAS  Google Scholar 

  50. Li JH. Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm. 2005;2005:185–193.

    Article  PubMed  Google Scholar 

  51. Mayo JC, Sainz RM, Tan DX, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxy-kynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol. 2005;165:139–149.

    Article  PubMed  CAS  Google Scholar 

  52. Rodríguez-Reynoso S, Leal C, Portilla-de Buen E, Castillo JC, Ramos-Solano F. Melatonin ameliorates renal ischemia/reperfusion injury. J Surg Res. 2004;116:242–247.

    Article  PubMed  Google Scholar 

  53. Alarcón de la Lastra C, Motilva V, Martín MJ, et al. Protective effect of melatonin on indomethacin-induced gastric injury in rats. J Pineal Res. 1999;26:101–107.

    Article  PubMed  Google Scholar 

  54. Cuzzocrea S, Mazzon E, Serraino I, Lepore V, Terranova ML, Ciccolo A. Melatonin reduces dinitrobenzene sulfonic acid-induced colitis. J Pineal Res. 2001;30:1–12.

    Article  PubMed  CAS  Google Scholar 

  55. Konturek PC, Konturek SJ, Brzozowski T, et al. Gastroprotective activity of melatonin and its precursor, l-tryptophan, against stress-induced and ischaemia-induced lesions is mediated by scavenge of oxygen radicals. Scand J Gastroenterol. 1997;32:433–438.

    Article  PubMed  CAS  Google Scholar 

  56. Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 1995;9:526–533.

    PubMed  CAS  Google Scholar 

  57. Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64:517–526.

    Article  PubMed  CAS  Google Scholar 

  58. Kedziora-Kornatowska K. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J Pineal Res. 2008;45:312–317.

    Article  PubMed  CAS  Google Scholar 

  59. Tamura H. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–287.

    Article  PubMed  CAS  Google Scholar 

  60. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336:186–195.

    Article  PubMed  CAS  Google Scholar 

  61. Kadoma Y, Fujisawa S. Radical-scavenging activity of melatonin, either alone or in combination with vitamin E, ascorbate or 2-mercaptoethanol as co-antioxidants, using the induction period method. In Vivo. 2011;25:49–53.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Council for Scientific and Industrial Research (CSIR), New Delhi for the financial support for the study. Mr. Viswa Kalyan Kolli is a senior research fellow on the present study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premila Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolli, V.K., Abraham, P., Isaac, B. et al. Preclinical Efficacy of Melatonin to Reduce Methotrexate-Induced Oxidative Stress and Small Intestinal Damage in Rats. Dig Dis Sci 58, 959–969 (2013). https://doi.org/10.1007/s10620-012-2437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2437-4

Keywords

Navigation