Digestive Diseases and Sciences

, Volume 58, Issue 3, pp 841–849 | Cite as

Clinical Impact of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Patients with Biliary Tract Infection

  • Hong Joo Kim
  • Jung Ho Park
  • Dong Il Park
  • Yong Kyun Cho
  • Chong Il Sohn
  • Woo Kyu Jeon
  • Byung Ik Kim
Original Article



Clinical outcomes associated with Gram-negative bacterial isolates with extended spectrum beta-lactamase (ESBL) in patients with biliary tract infection are largely unknown. The objective of the present study was to compare the demographics, risk factors, and clinical outcomes between patients with biliary tract infection caused by ESBL-producing and non-producing Klebsiella pneumoniae and Escherichia coli.


Between February 2005 and August 2010, we collected 159 cases with biliary tract infection caused by K. pneumoniae and E. coli identified by blood or bile cultures obtained before endoscopic or surgical treatment performed at our institution. We also retrospectively collected the data of patients’ demographic characteristics, co-morbid conditions, antimicrobial therapy, and clinical outcomes.


Among the 159 strains isolated, 21 strains (13.2 %) were positive for phenotypical ESBL-test. Sepsis was more common in ESBL-positive strains, but did not reach statistical significance (23.8 % for ESBL-positive strains and 9.4 % for ESBL-negative strains, P = 0.066). Thirty-day mortality was significantly higher in ESBL-positive strains (3/21, 14.3 %) compared to ESBL-negative strains (4/138, 2.9 %, P = 0.049). However, there were no significant differences in overall survival between ESBL-positive and ESBL-negative strains. By multivariate analysis, inadequate antimicrobial therapy (HR 4.06, 95 % CI 1.08–16.46, P = 0.049) and sepsis (HR 6.54, 95 % CI 1.26–33.85, P = 0.025) were independent and significant predictors of 30-day mortality.


ESBL status of bacterial isolates for patients with biliary tract infection caused by K. pneumoniae and E. coli has clinical impact, especially on the short-term outcomes of those patients.


Extended-spectrum beta-lactamase Biliary tract infection Klebsiella pneumoniae Escherichia coli 



Alkaline phosphatase


Area under receiver operating characteristics


Common bile duct


Confidence interval


C-reactive protein


Endoscopic retrograde cholangiopancreatography


Extended spectrum beta-lactamase


Endoscopic sphincterotomy


Hazard ratio


Minimum inhibitory concentration


Percutaneous transheaptic biliary drainage


Standard deviation




White bold cell


Conflict of interest



  1. 1.
    Melzer M, Toner R, Lacey S, Bettany E, Rait G. Biliary tract infection and bacteraemia: presentation, structural abnormalities, causative organisms and clinical outcomes. Postgrad Med J. 2007;83:773–776.PubMedCrossRefGoogle Scholar
  2. 2.
    Attasaranya S, Fogel EL, Lehman GA. Choledocholithiasis, ascending cholangitis, and gallstone pancreatitis. Med Clin N Am. 2008;92:925–960.PubMedCrossRefGoogle Scholar
  3. 3.
    Claesson BE, Holmlud DE, Matzsch TW. Microflora of the gallbladder related to duration of acute cholecystitis. Surg Gynecol Obstet. 1986;162:531–535.PubMedGoogle Scholar
  4. 4.
    Shimada K, Noro T, Inamatsu T, Urayama K, Adachi K. Bacteriology of acute obstructive suppurative cholangitis of the aged. J Clin Microbiol. 1981;14:522–526.PubMedGoogle Scholar
  5. 5.
    Thompson JE Jr, Tompkin RK, Longmire WP Jr. Factors in management of acute cholangitis. Ann Surg. 1982;195:137–145.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee CC, Chang IJ, Lai YC, Chen SY, Chen SC. Epidemiology and prognostic determinants of patients with bacteraemic cholecystitis or cholangitis. Am J Gastroenterol. 2007;102:563–569.PubMedCrossRefGoogle Scholar
  7. 7.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic co-morbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40:373–383.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwaber M, Navon-Venezia S, Kaye K, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-beta-actamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2006;50:1257–1262.PubMedCrossRefGoogle Scholar
  9. 9.
    Pfaller M, Segreti J. Overview of the epidemiological profile and laboratory detection of extended-spectrum β-lactamases. Clin Infect Dis. 2006;42:S153–S163.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramphal R, Ambrose PG. Extended-spectrum β-lactamases and clinical outcomes: current data. Clin Infect Dis. 2006;42:S164–S172.PubMedCrossRefGoogle Scholar
  11. 11.
    Goossens H, Grabein B. Prevalence and antimicrobial susceptibility data for extended-spectrum β-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC program in Europe and the United States (1997–2004). Diagn Microbiol Infect Dis. 2005;53:257–264.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaye K, Engemann J, Fraimow H, Abrutyn E. Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms and clinical management. Infect Dis Clin N Am. 2004;18:467–511.CrossRefGoogle Scholar
  13. 13.
    Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement. M100S15. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2005.Google Scholar
  14. 14.
    Bush K. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001;32:1085–1089.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991;35:1697–1704.PubMedCrossRefGoogle Scholar
  16. 16.
    Cosgrove SE, Carmeli Y. The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis. 2003;6:1433–1437.Google Scholar
  17. 17.
    Winokur PL, Canton R, Casellas JM, Leqakis N. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis. 2001;32:S94–S103.PubMedCrossRefGoogle Scholar
  18. 18.
    Spanu T, Sanguinetti M, Tumbarello M, et al. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. J Clin Microbiol. 2006;44:3257–3262.PubMedCrossRefGoogle Scholar
  19. 19.
    Tumbarello M, Spanu T, Sanguinetti M, et al. Bloodstream infections caused by extended spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother. 2006;50:498–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother. 2007;51:1987–1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699–1713.PubMedCrossRefGoogle Scholar
  22. 22.
    Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466–475.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;60:913–920.PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson D, Engemann J, Harrell L, Carmeli Y, Reller LB, Kaye KS. Predictors of mortality in patients with bloodstream infection due to ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2006;5:1715–1720.CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Bano J, Navarro M, Romero L, et al. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis. 2006;43:1407–1414.PubMedCrossRefGoogle Scholar
  26. 26.
    Mezler M, Peterson I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect. 2007;55:254–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hong Joo Kim
    • 1
  • Jung Ho Park
    • 1
  • Dong Il Park
    • 1
  • Yong Kyun Cho
    • 1
  • Chong Il Sohn
    • 1
  • Woo Kyu Jeon
    • 1
  • Byung Ik Kim
    • 1
  1. 1.Department of Internal MedicineKangbuk Samsung Hospital, Sungkyunkwan UniversityJongro-Ku, SeoulKorea

Personalised recommendations