Lactobacillus plantarum Prevents Bacterial Translocation in Rats Following Ischemia and Reperfusion Injury

  • Bin Wang
  • Qian Huang
  • Wei Zhang
  • Ning Li
  • Jieshou Li
Original Article



Bacterial translocation is considered a major cause of initiation and development of systemic sepsis and multiple organ dysfunction in clinic. The aim of this study was to determine the ability of a defined Lactobacillus plantarum to prevent ischemia/reperfusion (I/R) induced intestinal infection.


Female Sprague-Dawley rats were randomly allocated into three groups: (1) controls (sham-operated, no treatment), (2) ischemia/reperfusion and (3) ischemia/reperfusion and Lactobacillus plantarum treatment. Lactobacillus plantarum L2 was administered daily intragastrically 14 days prior to induction of I/R. Rats were then sacrificed, and tissue and blood samples were cultured to determine bacterial translocation. Cytokines in plasma were detected by ELISA. Ileal segments were removed for morphological examination.


Intestinal I/R induced excess pro-inflammatory cytokine secretion and barrier dysfunction (increased epithelial cell apoptosis, cecal flora dysbiosis, disruption of mucosa and multiple erosions) in the intestine, associated with increased bacterial translocation to extraintestinal sites. Approximately 87.5% of rats exposed to I/R had bacterial translocation while there was no bacterial translocation in controls. However, pretreatment of animals with Lactobacillus plantarum completely prevented I/R induced bacterial translocation, reduced pro-inflammatory cytokine release, and intestinal epithelial cell apoptosis, resulting in recovered microflora and mucosal integrity.


These findings indicate that Lactobacillus plantarum L2 can prevent I/R-induced bacterial translocation and intestinal barrier dysfunction and, thereby, exert beneficial effects in the intestinal tract.


Lactobacillus plantarum Ischemia and reperfusion Bacterial translocation 



The present work was financially supported by the National Natural Science Foundation of China (Grants 30801090 and 30830098).


  1. 1.
    Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol. 1996;4:430–435.PubMedCrossRefGoogle Scholar
  2. 2.
    Simon GL, Gorbach SL. The human intestinal microflora. Dig Dis Sci. 1986;31:147S–162S.PubMedCrossRefGoogle Scholar
  3. 3.
    Hopkins MJ, Macfarlane GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol. 2002;51:448–454.PubMedGoogle Scholar
  4. 4.
    MacFie J, O’Boyle C, Mitchell C, Buckley P, Johnstone D, Sudworth P. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–228.PubMedCrossRefGoogle Scholar
  5. 5.
    Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995;3:149–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Wells CL, VandeWesterlo EM, Jechorek RP, Erlandsen SL. Effect of hypoxia on enterocyte endocytosis of enteric bacteria. Crit Care Med. 1996;24:985–991.PubMedCrossRefGoogle Scholar
  7. 7.
    Kong SE, Blennerhassett LR, Heel KA, McCauley RD, Hall JC. Ischemia-reperfusion injury to the intestine. Aust N Z J Surg. 1998;68:554–561.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuzu MA, Kale IT, Cöl C, Tekeli A, Tanik A, Köksoy C. Obstructive jaundice promotes bacterial translocation in humans. Hepatogastroenterology. 1999;46:2159–2164.PubMedGoogle Scholar
  9. 9.
    Cicalese L, Sileri P, Green M, Abu-Elmagd K, Kocoshis S, Reyes J. Bacterial translocation in clinical intestinal transplantation. Transplantation. 2001;71:1414–1417.PubMedCrossRefGoogle Scholar
  10. 10.
    Cirera I, Bauer TM, Navasa M, et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol. 2001;34:32–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Peitzman AB, Udekwu AO, Ochoa J, Smith S. Bacterial translocation in trauma patients. J Trauma. 1991;31:1083–1086.PubMedGoogle Scholar
  12. 12.
    Riddington DW, Venkatesh B, Boivin CM, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA. 1996;275:1007–1012.PubMedCrossRefGoogle Scholar
  13. 13.
    Hebra A, Hong J, McGowan KL, Smith C, Mckernan ML, Ross AJ 3rd. Bacterial translocation in mesenteric ischemia-reperfusion injury: is dysfunctional motility the link. J Pediatr Surg. 1994;29:280–285.PubMedCrossRefGoogle Scholar
  14. 14.
    Leaphart CL, Tepas JJ 3rd. The gut is a motor of organ system dysfunction. Surgery. 2007;141:563–569.PubMedCrossRefGoogle Scholar
  15. 15.
    Mattila-Sandholm T, Mättö J, Saarela M. Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora. Int Dairy J. 1999;9:25–35.CrossRefGoogle Scholar
  16. 16.
    Merk K, Borelli C, Korting HC. Lactobacilli-bacteria-host interactions with special regard to the urogenital tract. Int J Med Microbiol. 2005;295:9–18.PubMedCrossRefGoogle Scholar
  17. 17.
    Foligne B, Nutten S, Grangette C, et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. W J Gastroenterol. 2007;13:236–243.Google Scholar
  18. 18.
    Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics and prebiotics. Gastroenterology. 2004;126:1620–1633.PubMedCrossRefGoogle Scholar
  19. 19.
    Biller JA, Katz AJ, Flores AF, Buie TM, Gorbach SL. Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J Pediatr Gastroenterol Nutr. 1995;21:224–226.PubMedCrossRefGoogle Scholar
  20. 20.
    Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology. 1999;116:1107–1114.PubMedCrossRefGoogle Scholar
  21. 21.
    Mangell P, Nejdfors P, Wang M, et al. Lactobacillus plantarum 299V inhibits Escherichia coli-induced intestinal permeability. Dig Dis Sci. 2002;47:511–516.PubMedCrossRefGoogle Scholar
  22. 22.
    Zareie M, Johnson-Henry K, Jury J, et al. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut. 2006;55:1553–1560.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang B, Li J, Zhang H, Li Q, Li N. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract. Int J Food Microbiol. 2009;132:59–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto S, Tanabe M, Wakabayashi G, Shimazu M, Matsumoto K, Kitajima M. The role of tumor necrosis factor-α and interleukin-1β in ischemia-reperfusion injury of the rat small intestine. J Surg Res. 2001;99:134–141.PubMedCrossRefGoogle Scholar
  25. 25.
    Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478–483.PubMedGoogle Scholar
  26. 26.
    van Minnen LP, Timmerman HM, Lutgendorff F, et al. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery. 2007;141:470–480.PubMedCrossRefGoogle Scholar
  27. 27.
    Roller M, Rechkemmer G, Watzl B. Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J Nutr. 2004;134:153–156.PubMedGoogle Scholar
  28. 28.
    Dalwai F, Spratt DA, Pratten J. Modeling shifts in microbial populations associated with health or disease. Appl Environ Microbiol. 2006;72:3678–3684.PubMedCrossRefGoogle Scholar
  29. 29.
    Stecher B, Hardt WD. The role of microbiota in infectious disease. Trends Microbiol. 2008;16:107–114.PubMedCrossRefGoogle Scholar
  30. 30.
    Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G. Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg. 1999;229:478–486.PubMedCrossRefGoogle Scholar
  31. 31.
    Kurtel H, Fujimoto K, Zimmerman BJ, Granger DN, Tso P. Ischemia-reperfusion-induced mucosal dysfunction: role of neutrophils. Am J Physiol. 1991;261:G490–G496.PubMedGoogle Scholar
  32. 32.
    Grotz MR, Ding J, Guo W, Huang Q, Deitch EA. Comparison of plasma cytokine levels in rats subjected to superior mesenteric artery occlusion or hemorrhagic shock. Shock. 1995;3:362–368.PubMedCrossRefGoogle Scholar
  33. 33.
    Souza DG, Teixeira MM. The balance between the production of tumor necrosis factor-alpha and interleukin-10 determines tissue injury and lethality during intestinal ischemia and reperfusion. Mem Inst Oswaldo Cruz. 2005;100:59–66.PubMedCrossRefGoogle Scholar
  34. 34.
    Zeng H, Wu H, Sloane V, et al. Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. Am J Physiol Gastrointest Liver Physiol. 2006;290:G96–G108.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu B, Qiu W, Wang P, et al. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut. 2007;56:645–654.PubMedCrossRefGoogle Scholar
  36. 36.
    Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277:50959–50965.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bin Wang
    • 1
  • Qian Huang
    • 1
  • Wei Zhang
    • 1
  • Ning Li
    • 1
  • Jieshou Li
    • 1
  1. 1.Department of Surgery, Research Institute of General SurgeryJin Ling HospitalNanjingPeople’s Republic of China

Personalised recommendations