Advertisement

Digestive Diseases and Sciences

, Volume 56, Issue 10, pp 2838–2848 | Cite as

Helicobacter bilis Colonization Enhances Susceptibility to Typhlocolitis Following an Inflammatory Trigger

  • Zhiping Liu
  • Amanda E. Ramer-Tait
  • Abigail L. Henderson
  • Cumhur Yusuf Demirkale
  • Dan Nettleton
  • Chong Wang
  • Jesse M. Hostetter
  • Albert E. Jergens
  • Michael J. Wannemuehler
Original Article

Abstract

Background

Aberrant mucosal immune responses to antigens of the resident microbiota are a significant cause of inflammatory bowel diseases (IBD), as are genetic and environmental factors. Previous work from our laboratory demonstrated that Helicobacter bilis colonization of immunocompetent, defined microbiota mice induced antigen-specific immune responses to the resident microbiota, yet these mice failed to develop colitis, suggesting that the immunological provocation induced by H. bilis alone was insufficient to induce disease.

Aim

The purpose of this study was to test the hypothesis that the introduction of a bacterial provocateur such as H. bilis enhances the host’s susceptibility to IBD following an inflammatory event.

Methods

Defined microbiota (DM) mice colonized with H. bilis were administered low dose (1.5%) dextran sodium sulfate (DSS) in drinking water for 5 days followed by a 4-day restitution period. Severity of lesions was assessed grossly and microscopically. Differential expression of select mucosal genes and histopathologic lesions was characterized.

Results

Helicobacter bilis colonization increased the severity of intestinal inflammation induced by an inflammatory trigger in the form of low-dose DSS. An analysis of the molecular and cellular mechanisms associated with H. bilis colonization revealed significant increases in expression of mucosal genes associated with lymphocyte activation and inflammatory cell chemotaxis as well as increased infiltration of mucosal macrophages and T cells in mice colonized with H. bilis prior to DSS treatment versus DSS treatment alone.

Conclusions

These results indicate that prior colonization with H. bilis heightens the host’s sensitivity to enteric inflammation by altering mucosal homeostasis and initiating immune cell activation and migration.

Keywords

Helicobacter bilis Colitis Immune cells Chemotaxis Activation 

Notes

Acknowledgments

We thank Charlie Johnson, Elise Huffman, Jack Gallup, Andrea Dorn and the Iowa State University GeneChip Facility for providing technical assistance relative to the completion of these studies. This study was supported by NIH Grant K01 RR 018618 (NCRR), Crohn’s and Colitis Foundation of America, and Iowa State University Bailey Research Career Development Award.

References

  1. 1.
    Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407.PubMedCrossRefGoogle Scholar
  2. 2.
    Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.PubMedCrossRefGoogle Scholar
  3. 3.
    Kappelman MD, Rifas-Shiman SL, Porter CQ, et al. Direct health care costs of Crohn’s disease and ulcerative colitis in US children and adults. Gastroenterology. 2008;135:1907–1913.PubMedCrossRefGoogle Scholar
  4. 4.
    Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–594.PubMedCrossRefGoogle Scholar
  5. 5.
    Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet. 2009;10:89–116.PubMedCrossRefGoogle Scholar
  7. 7.
    Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis. 2009;22:292–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene atg16l1 phenotypes in intestine. Cell. 2010;141:1135–1145.PubMedCrossRefGoogle Scholar
  9. 9.
    Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology. 2009;137:495–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor NS, Xu S, Nambiar P, Dewhirst FE, Fox JG. Enterohepatic Helicobacter species are prevalent in mice from commercial and academic institutions in Asia, Europe, and North America. J Clin Microbiol. 2007;45:2166–2172.PubMedCrossRefGoogle Scholar
  11. 11.
    Bohr UR, Glasbrenner B, Primus A, Zagoura A, Wex T, Malfertheiner P. Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J Clin Microbiol. 2004;42:2766–2768.PubMedCrossRefGoogle Scholar
  12. 12.
    Whary MT, Fox JG. Detection, eradication, and research implications of Helicobacter infections in laboratory rodents. Lab Anim (NY). 2006;35:25–27, 30–26.Google Scholar
  13. 13.
    Burich A, Hershberg R, Waggie K, et al. Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2001;281:G764–G778.PubMedGoogle Scholar
  14. 14.
    Haines DC, Gorelick PL, Battles JK, et al. Inflammatory large bowel disease in immunodeficient rats naturally and experimentally infected with Helicobacter bilis. Vet Pathol. 1998;35:202–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Maggio-Price L, Shows D, Waggie K, et al. Helicobacter bilis infection accelerates and H. hepaticus infection delays the development of colitis in multiple drug resistance-deficient (mdr1a−/−) mice. Am J Pathol. 2002;160:739–751.PubMedCrossRefGoogle Scholar
  16. 16.
    Shomer NH, Dangler CA, Schrenzel MD, Fox JG. Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect Immun. 1997;65:4858–4864.PubMedGoogle Scholar
  17. 17.
    Jergens AE, Dorn A, Wilson J, et al. Induction of differential immune reactivity to members of the flora of gnotobiotic mice following colonization with Helicobacter bilis or Brachyspira hyodysenteriae. Microbes Infect. 2006;8:1602–1610.PubMedCrossRefGoogle Scholar
  18. 18.
    Jergens AE, Wilson-Welder JH, Dorn A, et al. Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut. 2007;56:934–940.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu Z, Henderson AL, Nettleton DS, et al. Mucosal gene expression profiles following the colonization of immunocompetent gnotobiotic C3H mice with Helicobacter bilis: a prelude to typhlocolitis. Microbes Infect. 2009;374–383.Google Scholar
  20. 20.
    Kendziorski CM, Zhang Y, Lan H, Attie AD. The efficiency of pooling mRNA in microarray experiments. Biostatistics. 2003;4:465–477.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang W, Carriquiry A, Nettleton D, Dekkers JC. Pooling mRNA in microarray experiments and its effect on power. Bioinformatics. 2007;23:1217–1224.PubMedCrossRefGoogle Scholar
  22. 22.
    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of affymetrix genechip probe level data. Nucleic Acids Res. 2003;31:e15.PubMedCrossRefGoogle Scholar
  23. 23.
    Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–9445.PubMedCrossRefGoogle Scholar
  24. 24.
    Dennis G Jr, Sherman BT, Hosack DA, et al. David: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.Google Scholar
  25. 25.
    Hostetter J, Huffman E, Byl K, Steadham E. Inducible nitric oxide synthase immunoreactivity in the granulomatous intestinal lesions of naturally occurring bovine Johne’s disease. Vet Pathol. 2005;42:241–249.PubMedCrossRefGoogle Scholar
  26. 26.
    Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF Jr, Weinstock JV. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol. 2004;34:2690–2698.PubMedCrossRefGoogle Scholar
  27. 27.
    da Silva AJ, Li Z, de Vera C, Canto E, Findell P, Rudd CE. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc Natl Acad Sci USA. 1997;94:7493–7498.PubMedCrossRefGoogle Scholar
  28. 28.
    Linsley PS, Ledbetter JA. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191–212.PubMedCrossRefGoogle Scholar
  29. 29.
    Musci MA, Hendricks-Taylor LR, Motto DG, et al. Molecular cloning of SLAP-130, an SLP-76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J Biol Chem. 1997;272:11674–11677.PubMedCrossRefGoogle Scholar
  30. 30.
    Xingyuan M, Wenyun Z, Tianwen W. Leukocyte function-associated antigen-1: structure, function and application prospects. Protein Pept Lett. 2006;13:397–400.PubMedCrossRefGoogle Scholar
  31. 31.
    Brustle A, Heink S, Huber M, et al. The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol. 2007;8:958–966.PubMedCrossRefGoogle Scholar
  32. 32.
    Mackay F, Cancro MP. Travelling with the BAFF/BLyS family: are we there yet? Semin Immunol. 2006;18:261–262.PubMedCrossRefGoogle Scholar
  33. 33.
    Proost P, Wuyts A, Van Damme J. Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol. 1996;59:67–74.PubMedGoogle Scholar
  34. 34.
    Eksteen B, Miles A, Curbishley SM, et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J Immunol. 2006;177:593–603.PubMedGoogle Scholar
  35. 35.
    Kang SG, Piniecki RJ, Hogenesch H, et al. Identification of a chemokine network that recruits FoxP3(+) regulatory T cells into chronically inflamed intestine. Gastroenterology. 2007;132:966–981.PubMedCrossRefGoogle Scholar
  36. 36.
    Zen K, Parkos CA. Leukocyte-epithelial interactions. Curr Opin Cell Biol. 2003;15:557–564.PubMedCrossRefGoogle Scholar
  37. 37.
    Qualls JE, Kaplan AM, van Rooijen N, Cohen DA. Suppression of experimental colitis by intestinal mononuclear phagocytes. J Leuk Biol. 2006;80:802–815.CrossRefGoogle Scholar
  38. 38.
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–533.PubMedCrossRefGoogle Scholar
  39. 39.
    Maloy KJ. The interleukin-23/interleukin-17 axis in intestinal inflammation. J Intern Med. 2008;263:584–590.PubMedCrossRefGoogle Scholar
  40. 40.
    Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135:781–786.PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130:1588–1594.PubMedCrossRefGoogle Scholar
  42. 42.
    Powell SJ, Wilmot AJ. Ulcerative post-dysenteric colitis. Gut. 1966;7:438–443.PubMedCrossRefGoogle Scholar
  43. 43.
    Treacher DF, Jewell DP. Yersinia colitis associated with Crohn’s disease. Postgrad Med J. 1985;61:173–174.PubMedCrossRefGoogle Scholar
  44. 44.
    Schumacher G, Kollberg B, Sandstedt B, et al. A prospective study of first attacks of inflammatory bowel disease and non-relapsing colitis. Microbiologic findings. Scand J Gastroenterol. 1993;28:1077–1085.PubMedCrossRefGoogle Scholar
  45. 45.
    Lencioni KC, Seamons A, Treuting PM, Maggio-Price L, Brabb T. Murine norovirus: an intercurrent variable in a mouse model of bacteria-induced inflammatory bowel disease. Comp Med. 2008;58:522–533.PubMedGoogle Scholar
  46. 46.
    Tessner TG, Cohn SM, Schloemann S, Stenson WF. Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterology. 1998;115:874–882.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhiping Liu
    • 1
  • Amanda E. Ramer-Tait
    • 1
  • Abigail L. Henderson
    • 1
  • Cumhur Yusuf Demirkale
    • 5
  • Dan Nettleton
    • 5
  • Chong Wang
    • 2
    • 5
  • Jesse M. Hostetter
    • 3
  • Albert E. Jergens
    • 4
  • Michael J. Wannemuehler
    • 1
  1. 1.Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary MedicineIowa State UniversityAmesUSA
  2. 2.Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary MedicineIowa State UniversityAmesUSA
  3. 3.Department of Veterinary Pathology, College of Veterinary MedicineIowa State UniversityAmesUSA
  4. 4.Department of Veterinary Clinical Sciences, College of Veterinary MedicineIowa State UniversityAmesUSA
  5. 5.Department of Statistics, College of Liberal Arts and SciencesIowa State UniversityAmesUSA

Personalised recommendations