Digestive Diseases and Sciences

, Volume 56, Issue 6, pp 1794–1800 | Cite as

Serum Antibodies to Mycobacterium avium Subspecies paratuberculosis Combined with Anti-Saccharomyces cerevisiae Antibodies in Crohn’s Disease Patients: Prevalence and Diagnostic Role

  • Franck Biet
  • Laurent Gendt
  • Eric Anton
  • Eric Ballot
  • Jean-Pierre Hugot
  • Catherine Johanet
Original Article



Because Mycobacterium avium subspecies paratuberculosis (MAP), the etiologic agent of Johne’s disease in ruminant, has been identified in the mucosal layer and deeper bowel wall in CD patients, the seroactivity against MAP may define a distinct subset of patients requiring individual treatment. The aim of this study was to assess the performance of anti-MAP antibodies in the diagnostic strategy for CD.


Two hundred seventy-two individuals were included: 81 with CD, 36 with ulcerative colitis, 35 with coeliac diseases and 120 healthy blood donors. Anti-MAP were detected by ELISA using a purified protein derivative from MAP. Anti-Saccharomyces cerevisiae antibodies (ASCA) were detected by indirect immunofluorescence.


The sensitivity and specificity of anti-MAP and ASCA for CD diagnosis were similar (sensitivity: 0.33 ± 0.10 and 0.31 ± 0.10; specificity: 0.96 ± 0.03 and 0.98 ± 0.02, respectively). A combination of these two tests enabled an increase in sensitivity (0.53 ± 0.10), although specificity remained unchanged (0.95 ± 0.04). No correlation was found between anti-MAP positivity and clinical features such as age at onset and the duration of CD, disease location, or intestinal complications. Conversely, extra-intestinal manifestations of CD were statistically associated with a positivity of anti-MAP (48% vs. 24%, P = 0.028), mostly with respect to arthritis (44.5% vs. 13%, P < 0.002). Interestingly, anti-MAP and ASCA were also found in an active form of coeliac disease.


Our results suggest a complementary role of ASCA and anti-MAP for CD diagnosis and a possible common role of bacteria in small intestinal mucosal damage in CD and coeliac disease.


Anti-Mycobacterium avium subspecies paratuberculosis antibodies Anti-Saccharomyces cerevisiae antibodies Crohn’s disease Coeliac disease 



This work was supported by fund from (AFA) Association François Aupetit, la maison des MICI, Paris, France.


  1. 1.
    Pineton de Chambrun G, Colombel JF, Poulain D, Darfeuille-Michaud A. Pathogenic agents in inflammatory bowel diseases. Curr Opin Gastroenterol. 2008;24:440–447.PubMedCrossRefGoogle Scholar
  2. 2.
    Dalziel TK. Chronic interstitial enteritis. BMJ. 1913;2:1068–1070.Google Scholar
  3. 3.
    Chiodini RJ. Crohn’s disease and the mycobacterioses: a review and comparison of two disease entities. Clin Microbiol Rev. 1989;2:90–117.PubMedGoogle Scholar
  4. 4.
    Sanderson JD, Moss MT, Tizard MLV, Hermon-Taylor J. Mycobacterium paratuberculosis DNA in Crohn’s disease tissue. Gut. 1992;33:890–896.PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler HM, Thurrell W, Johnson NM, Rook GAW, McFadden JJ. Specific detection of Mycobacterium paratuberculosis DNA associated with granulomatous tissue in Crohn’s disease. Gut. 1994;35:506–510.PubMedCrossRefGoogle Scholar
  6. 6.
    Collins MT, Lisby G, Moser C, et al. Results of multiple diagnostic tests for Mycobacterium avium subsp paratuberculosis in patients with inflammatory bowel disease and in controls. J Clin Microbiol. 2000;38:4373–4381.PubMedGoogle Scholar
  7. 7.
    Wu SW, Pao CC, Chan J, Yen TS. Lack of mycobacterial DNA in Crohn’s disease tissue. Lancet. 1991;337:174–175.PubMedCrossRefGoogle Scholar
  8. 8.
    Suenaga K, Yokoyama Y, Okazaki K, Yamamoto Y. Mycobacteria in the intestine of Japanese patients with inflammatory bowel disease. Am J Gastroenterol. 1995;90:76–80.PubMedGoogle Scholar
  9. 9.
    Kanazawa K, Haga Y, Funakoshi O, Nakajima H, Munakata A, Yoshida Y. Absence of Mycobacterium paratuberculosis DNA in intestinal tissues from Crohn’s disease by nested polymerase chain reaction. J Gastroenterol. 1999;34:200–206.PubMedCrossRefGoogle Scholar
  10. 10.
    Naser SA, Ghobrial G, Romero C, Valentine JF. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet. 2004;364:1039–1044.PubMedCrossRefGoogle Scholar
  11. 11.
    Autschbach F, Eisold S, Hinz U, et al. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut. 2005;54:944–949.PubMedCrossRefGoogle Scholar
  12. 12.
    Abubakar I, Myhill D, Aliyu SH, Hunter PR. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn’s disease using nucleic acid-based techniques: a systematic review and meta-analysis. Inflamm Bowel Dis. 2008;14:401–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Nacy C, Buckley M. Mycobacterium avium paratuberculosis: infrequent human pathogen or public health threat? A report from the American Academy of Microbiology. http://www.asm.org/ASM/files/ccLibraryFiles/Filename/000000004169/MAP.pdf; 2008.
  14. 14.
    Mendoza JL, Lana R, Diaz-Rubio M. Mycobacterium avium subspecies paratuberculosis and its relationship with Crohn’s disease. World J Gastroenterol. 2009;15:417–422.PubMedCrossRefGoogle Scholar
  15. 15.
    Carpenter TE, Gardner IA, Collins MT, Whitlock RH. Effects of prevalence and testing by enzyme-linked immunosorbent assay and fecal culture on the risk of introduction of Mycobacterium avium subsp. paratuberculosis-infected cows into dairy herds. J Vet Diagn Invest. 2004;16:31–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Green EP, Tizard ML, Moss MT, et al. Sequence and characteristics of IS900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res. 1989;17:9063–9073.PubMedCrossRefGoogle Scholar
  17. 17.
    Hermon-Taylor J, Bull TJ, Sheridan JM, Cheng J, Stellakis ML, Sumar N. Causation of Crohn’s disease by Mycobacterium avium subspecies paratuberculosis. Can J Gastroenterol. 2000;14:521–539.PubMedGoogle Scholar
  18. 18.
    Tanaka K, Wilks M, Coates PJ, Farthing MJG, Walker-Smith JA, Tabaqchali S. Mycobacterium paratuberculosis and Crohn’s disease. Gut. 1991;32:43–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Suenaga K, Yokoyama Y, Nishimori I, et al. Serum antibodies to Mycobacterium paratuberculosis in patients with Crohn’s disease. Dig Dis Sci. 1999;44:1202–1207.PubMedCrossRefGoogle Scholar
  20. 20.
    Bernstein CN, Blanchard JF, Rawsthorne P, Collins MT. Population-based case control study of seroprevalence of Mycobacterium paratuberculosis in patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol. 2004;42:1129–1135.PubMedCrossRefGoogle Scholar
  21. 21.
    Naser SA, Hulten K, Shafran I, Graham DY, El-Zaatari FA. Specific seroreactivity of Crohn’s disease patients against p35 and p36 antigens of M. avium subsp. paratuberculosis. Vet Microbiol. 2000;77:497–504.PubMedCrossRefGoogle Scholar
  22. 22.
    Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42:788–791.PubMedCrossRefGoogle Scholar
  23. 23.
    Reese GE, Constantinides VA, Simillis C, et al. Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am J Gastroenterol. 2006;101:2410–2422.PubMedCrossRefGoogle Scholar
  24. 24.
    Desplat-Jégo S, Johanet C, Escande A, et al. Update on anti-Saccharomyces cerevisiae antibodies, anti-nuclear associated anti-neutrophil antibodies and antibodies to exocrine pancreas detected by indirect immunofluorescence as biomarkers in chronic inflammatory bowel diseases: results of a multicenter study. World J Gastroenterol. 2007;13:2312–2318.PubMedGoogle Scholar
  25. 25.
    Koutroubakis IE, Petinaki E, Mouzas IA, et al. Anti-Saccharomyces cerevisiae mannan antibodies and antineutrophil cytoplasmic autoantibodies in Greek patients with inflammatory bowel disease. Am J Gastroenterol. 2001;96:449–454.PubMedGoogle Scholar
  26. 26.
    Fresko I, Ugurlu S, Ozbakir F, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Behcet’s syndrome. Clin Exp Rheumatol. 2005;23:S67–S70.PubMedGoogle Scholar
  27. 27.
    Torok HP, Glas J, Gruber R, et al. Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: increased prevalence of ASCA and pANCA. Digestion. 2004;70:49–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Muratori P, Muratori L, Guidi M, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol. 2003;132:473–476.PubMedCrossRefGoogle Scholar
  29. 29.
    Mallant-Hent RCh, Mary B, von Blomberg E, et al. Disappearance of anti-Saccharomyces cerevisiae antibodies in coeliac disease during a gluten-free diet. Eur J Gastroenterol Hepatol. 2006;18:75–78.PubMedCrossRefGoogle Scholar
  30. 30.
    Toumi D, Mankaï A, Belhadj R, Ghedira-Besbes L, Jeddi M, Ghedira I. Anti-Saccharomyces cerevisiae antibodies in coeliac disease. Scand J Gastroenterol. 2007;42:821–826.PubMedCrossRefGoogle Scholar
  31. 31.
    Condino AA, Hoffenberg EJ, Accurso F, et al. Frequency of ASCA seropositivity in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2005;41:23–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Truelove SC, Witts LJ. Cortisone in ulcerative colitis; Final report on a therapeutic trial. Br Med J. 1955;2:1041–1048.PubMedCrossRefGoogle Scholar
  33. 33.
    Malchow H, Ewe K, Brandes JW, et al. European cooperative Crohn’s disease study (ECCDS): results of drug treatment. Gastroenterology. 1984;86:249–266.PubMedGoogle Scholar
  34. 34.
    Claise C, Johanet C, Bouhnik Y, Kapel N, Homberg JC, Poupon R. Antineutrophil cytoplasmic autoantibodies in autoimmune liver and inflammatory bowel diseases. Liver. 1996;16:28–34.PubMedGoogle Scholar
  35. 35.
    Angus RD. Production of reference PPD tuberculins for veterinary use in the United States. J Biol Stand. 1978;6:221–227.PubMedCrossRefGoogle Scholar
  36. 36.
    Kremer L, Riveau G, Baulard A, Capron A, Locht C. Neutralizing antibody responses elicited in mice immunized with recombinant bacillus Calmette-Guerin producing the Schistosoma mansoni glutathione S-transferase. J Immunol. 1996;156:4309–4317.PubMedGoogle Scholar
  37. 37.
    Shafran I, Piromalli C, Decker JW, Sandoval J, Naser SA, El-Zaatari FAK. Seroreactivities against Saccharomyces cerevisiae and Mycobacterium avium subsp. paratuberculosis p35 and p36 antigens in Crohn’s disease patients. Dig Dis Sci. 2002;47:2079–2081.PubMedCrossRefGoogle Scholar
  38. 38.
    Muller S, Schaffer T, Schoepfer AM, Hilty A, Bodmer T, Seibold F. Partial overlap of anti-mycobacterial, and anti-Saccharomyces cerevisiae mannan antibodies in Crohn’s disease. World J Gastroenterol. 2008;14:3650–3661.PubMedCrossRefGoogle Scholar
  39. 39.
    Feller M, Huwiler K, Stephan R, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–613.PubMedCrossRefGoogle Scholar
  40. 40.
    Devlin SM, Dubinsky MC. Determination of serologic and genetic markers aid in the determination of the clinical course and severity of patients with IBD. Inflamm Bowel Dis. 2008;14:125–128.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakase H, Nishio A, Tamaki H, et al. Specific antibodies against recombinant protein of insertion element 900 of Mycobacterium avium subspecies paratuberculosis in Japanese patients with Crohn’s disease. Inflamm Bowel Dis. 2006;12:62–69.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5:318–330.PubMedCrossRefGoogle Scholar
  43. 43.
    Routsias JG, Tzioufas A. The role of chaperone proteins in autoimmunity. Ann NY Acad Sci. 2006;1088:52–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Eden W, Wick G, Albani S, Cohen I. Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann NY Acad Sci. 2007;1113:217–237.PubMedCrossRefGoogle Scholar
  45. 45.
    Vermeire S, Rutgeerts P. Antibody responses in Crohn’s disease. Gastroenterology. 2004;126:601–604.PubMedCrossRefGoogle Scholar
  46. 46.
    Landers CJ, Cohavy O, Misra R, et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto-and microbial antigens. Gastroenterology. 2002;123:689–699.PubMedCrossRefGoogle Scholar
  47. 47.
    Dubinsky MC, Lin YC, Dutridge D, et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–367.PubMedCrossRefGoogle Scholar
  48. 48.
    Dotan I, Fishman S, Dgani Y, et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–378.PubMedCrossRefGoogle Scholar
  49. 49.
    Sutton CL, Kim J, Yamane A, et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology. 2000;119:23–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Mpofu CM, Campbell BJ, Subramanian S, et al. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn’s disease. Gastroenterology. 2007;133:1487–1498.PubMedCrossRefGoogle Scholar
  51. 51.
    Barreau F, Meinzer U, Chareyre F, et al. CARD15/NOD2 is required for Peyer’s patches homeostasis in mice. Plos One. 2007;2:e523.PubMedCrossRefGoogle Scholar
  52. 52.
    Granito A, Muratori L, Muratori P, et al. Anti-saccharomyces cerevisiae antibodies (ASCA) in coeliac disease. Gut. 2006;55:296.PubMedGoogle Scholar
  53. 53.
    Ashorn S, Välineva T, Kaukinen K, et al. Serological responses to microbial antigens in coeliac disease patients during gluten-free diet. J Clin Immunol. 2009;29:190–195.PubMedCrossRefGoogle Scholar
  54. 54.
    Greenstein RJ, Su L, Brown SL. Growth of M. avium subspecies paratuberculosis in culture is enhanced by nicotinic acid, nicotinamide, and alpha and beta nicotinamide adenine dinucleotide. Dig Dis Sci. 2010; Jun 29 [Epub ahead of print].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Franck Biet
    • 1
  • Laurent Gendt
    • 2
  • Eric Anton
    • 2
  • Eric Ballot
    • 2
  • Jean-Pierre Hugot
    • 3
  • Catherine Johanet
    • 2
    • 4
  1. 1.INRA, UR 1282Infectiologie Animale, Santé PubliqueToursFrance
  2. 2.Unité d’ImmunologieAP-HP Hôpital Saint-AntoineParis cedex 12France
  3. 3.INSERM UMR 843, Hôpital Robert DebréUniversité Paris DiderotParisFrance
  4. 4.UFR 967 Faculté de MédecineUniversité Pierre et Marie Curie, Paris 6ParisFrance

Personalised recommendations