Advertisement

Digestive Diseases and Sciences

, Volume 56, Issue 6, pp 1637–1644 | Cite as

Myenteric Denervation Downregulates Galectin-1 and -3 Expression in Gastric Carcinogenesis

  • Cássia F. Estofolete
  • Sérgio Zucoloto
  • Sonia M. Oliani
  • Ana Cláudia Polli-Lopes
  • Cristiane D. Gil
Original Article

Abstract

Background

This study evaluated the galectin-1 and -3 expression during N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis in denervated rat stomachs using benzalkonium chloride.

Method

Four experimental situations were evaluated: nondenervated and denervated stomachs without lesions and nondenervated and denervated stomachs with lesions. Sections of the pyloric region were stained with toluidine blue and incubated with mouse monoclonal anti-Gal-1 and rabbit polyclonal anti-Gal-3 for histopathological and immunohistochemical analysis, respectively.

Result

MNNG caused the development of benign and malignant epithelial lesions, which were more pronounced in nondenervated stomachs with lesions and accompanied by inflammatory cell-enriched stroma. By immunostaining, the epithelial cells, blood vessels, muscle layer, and myenteric plexus were Gal-1 and -3 positive. Gal-3 was also detected in the gastric crypts, mucus secretion, and fibroblasts of pyloric fragments. Development of lesions in denervated stomachs was associated with a significant decrease in Gal-1 and -3 expression in epithelial cells, mast cells, and neutrophil cytoplasm, compared with that of nondenervated stomach lesions (P < 0.01; P < 0.001; P < 0.001, respectively).

Conclusion

These results demonstrate that myenteric denervation downregulates endogenous Gal-1 and -3 expression, which might inhibit tumor development in this experimental model.

Keywords

Benzalkonium chloride Galectin Immunohistochemistry Mast cells MNNG Neutrophil 

Notes

Acknowledgments

We are grateful to Domingos Zanchetta Netto for technical support. Estofolete CF is supported by Fundação de Amparo à Pesquisa—FAPESP (grant 08/05722-6) and Oliani SM is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (grant 306074/2007-9), Brazil.

References

  1. 1.
    Rabinovich GA, Toscano MA. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol. 2009;9:338–352.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5:29–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Den Brule F, Califice S, Castronovo V. Expression of galectins in cancer: A critical review. Glycoconj J. 2004;19:537–542.PubMedCrossRefGoogle Scholar
  4. 4.
    Lawrence T. Inflammation and cancer: A failure of resolution? Trends Pharmacol Sci. 2007;28:162–165.PubMedCrossRefGoogle Scholar
  5. 5.
    Gil CD, Cooper D, Rosignoli G, Perretti M, Oliani SM. Inflammation-induced modulation of cellular galectin-1 and -3 expression in a model of rat peritonitis. Inflamm Res. 2006;55:99–107.PubMedCrossRefGoogle Scholar
  6. 6.
    Pastrnak A, Jansa P, Kolar Z. Mastocytes in the process of cancerogenesis. I. Study of experimental model systems. Cesk Patol. 1986;22:210–213.PubMedGoogle Scholar
  7. 7.
    Kondo K, Muramatsu M, Okamoto Y, et al. Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis. J Surg Oncol. 2006;93:36–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Estofolete CF, Botelho-Machado C, Taboga SR, Zucoloto S, Polli-Lopes AC, Gil CD. Effects of myenteric denervation on extracellular matrix fibers and mast cell distribution in normal stomach and gastric lesions. Cancer Cell Int. 2010;10:18.PubMedCrossRefGoogle Scholar
  9. 9.
    Caruso RA, Ieni A, Fabiano V, Basile G, Inferrera C. Perivascular mast cells in advanced gastric adenocarcinomas: An electron microscopic study. Anticancer Res. 2004;24:2257–2263.PubMedGoogle Scholar
  10. 10.
    Caruso RA, Fedele F, Zuccalà V, Fracassi MG, Venuti A. Mast cell and eosinophil interaction in gastric carcinomas: Ultrastructural observations. Anticancer Res. 2007;27:391–394.PubMedGoogle Scholar
  11. 11.
    Liang S, Hoskins M, Khanna P, Kunz RF, Dong C. Effects of the tumor-leukocyte microenvironment on melanoma-neutrophil adhesion to the endothelium in a shear flow. Cell Mol Bioeng. 2008;1:189–200.PubMedCrossRefGoogle Scholar
  12. 12.
    Souto JC, Vila L, Brú A. Polymorphonuclear neutrophils and cancer. Intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev. 2009; Dec 4 [Epub ahead of print].Google Scholar
  13. 13.
    Polli-Lopes AC, Zucoloto S, Cunha FQ, Figueiredo LAS, Garcia SB. Myenteric denervation reduces the incidence of gastric tumors in rats. Cancer Lett. 2003;190:45–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Galinsky DS, Nechushtan H. Mast cells and cancer—No longer just basic science. Crit Rev Oncol Hematol. 2008;68:115–130.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Der Zanden EP, Boeckxstaens GE, de Jonge WJ. The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol Motil. 2009;21:6–17.CrossRefGoogle Scholar
  16. 16.
    Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462.PubMedCrossRefGoogle Scholar
  17. 17.
    Galvis G, Lips KS, Kummer W. Expression of nicotinic acetylcholine receptors on murine alveolar macrophages. J Mol Neurosci. 2006;30:107–108.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams RM, Berthoud HR, Stead RH. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation. 1997;4:266–270.PubMedGoogle Scholar
  19. 19.
    Wasano K, Hirakawa Y. Recombinant galectin-1 recognizes mucin and epithelial cell surface glycocalyces of gastrointestinal tract. J Histochem Cytochem. 1997;45:275–283.PubMedCrossRefGoogle Scholar
  20. 20.
    Demetter P, Nagy N, Martin B, et al. The galectin family and digestive disease. J Pathol. 2008;215:1–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Lippert E, Gunckel M, Brenmoehl J, et al. Regulation of galectin-3 function in mucosal fibroblasts: Potential role in mucosal inflammation. Clin Exp Immunol. 2008;152:285–297.PubMedCrossRefGoogle Scholar
  22. 22.
    Demydenko D, Berest I. Expression of galectin-1 in malignant tumors. Exp Oncol. 2009;31:74–79.PubMedGoogle Scholar
  23. 23.
    Rhodes JM, Campbell BJ, Yu LG. Lectin–epithelial interactions in the human colon. Biochem Soc Trans. 2008;36:1482–1486.PubMedCrossRefGoogle Scholar
  24. 24.
    Matarrese P, Tinari N, Semeraro ML, Natoli C, Iacobelli S, Malorni W. Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett. 2000;473:311–315.PubMedCrossRefGoogle Scholar
  25. 25.
    Yu F, Finley RL Jr, Raz A, Kim HR. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome C release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem. 2002;277:15819–15827.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen HY, Sharma BB, Yu L, et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol. 2006;177:4991–4997.PubMedGoogle Scholar
  27. 27.
    Patterson RJ, Wang W, Wang JL. Understanding the biochemical activities of galectin-1 and galectin-3 in the nucleus. Glycoconj J. 2004;19:499–506.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamaoka A, Kuwabara I, Frigeri LG, Liu FT. A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol. 1995;154:3479–3487.PubMedGoogle Scholar
  29. 29.
    Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A. Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol. 1999;163:5592–5598.PubMedGoogle Scholar
  30. 30.
    Kuwabara I, Liu FT. Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol. 1996;156:3939–3944.PubMedGoogle Scholar
  31. 31.
    Truong MJ, Gruart V, Kusnierz JP, et al. Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: Role in IgE-dependent activation. J Exp Med. 1993;177:243–248.PubMedCrossRefGoogle Scholar
  32. 32.
    Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. Role of galectin-3as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol. 2002;168:1813–1822.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cássia F. Estofolete
    • 1
  • Sérgio Zucoloto
    • 2
  • Sonia M. Oliani
    • 3
  • Ana Cláudia Polli-Lopes
    • 1
  • Cristiane D. Gil
    • 1
    • 4
  1. 1.Department of AnatomySão José do Rio Preto School of Medicine (FAMERP)São PauloBrazil
  2. 2.Department of PathologyRibeirão Preto School of Medicine (FMRP-USP)São PauloBrazil
  3. 3.Department of BiologyInstituto de Biociências, Letras e Ciências Exatas (IBILCE-UNESP)São PauloBrazil
  4. 4.Department of Morphology and GeneticsFederal University of São Paulo (UNIFESP)São PauloBrazil

Personalised recommendations