Digestive Diseases and Sciences

, Volume 55, Issue 6, pp 1550–1564 | Cite as

Helicobacter pylori in a Korean Isolate Expressed Proteins Differentially in Human Gastric Epithelial Cells

  • Soon Ok Cho
  • Joo Weon Lim
  • Jong-Ho Jun
  • Kyung Hwan Kim
  • Hyeyoung Kim
Original Article



The proteins expressed in gastric epithelial cells infected with Helicobacter pylori (H. pylori) may determine the clinical outcome such as chronic gastritis, peptic ulcer, and gastric carcinoma. The present study aims to determine the differentially expressed proteins in human gastric epithelial AGS cells that were infected with H. pylori in a Korean isolate, a cagA+, vacA s1b m2 iceA1 H. pylori by proteomic analysis. The differentially expressed proteins, whose expression levels were more or less than twofold in H. pylori-infected cells, were analyzed.


Ten proteins (chromatin assembly factor-1, proliferating cell nuclear antigen, 14-3-3 protein τ, eukaryotic translation initiation factor 6, heat-shock protein 90β, dimethylarginine dimethylaminohydrolase-1, l-lactate dehydrogenase B chain, prohibitin, triosephosphate isomerase, protein disulfide isomerase) were up-regulated while eight proteins (heat-shock gp96 precursor, nucleophosmin, ornithine aminotransferase, Ku70, l-arginine-glycine amidinotransferase, Smad anchor for receptor activation, ADP-ribosylation factor, WD repeat-containing protein isoform 1) were down-regulated by H. pylori infection in AGS cells. These proteins are related to cell proliferation, cell adhesion, carcinogenesis, cell-defense mechanisms against oxidative stress, membrane trafficking, and energy metabolism.


Oxidative stress, cell proliferation, cell adhesion, and membrane trafficking may be involved in the pathogenesis of gastric diseases including cancer associated with H. pylori in a Korean isolate.


Gastric epithelial cells Gastroduodenal disease Helicobacter pylori Proteomic analysis 



Chromatin assembly factor-1


Proliferating cell nuclear antigen


Eukaryotic translation initiation factor


Heat-shock protein


l-Lactate dehydrogenase


Protein disulfide isomerase




Ornithine aminotransferase


l-Arginine-glycine amidinotransferase


ADP-ribosylation factor


WD repeat-containing protein


Dimethylarginine dimethylaminohydrolase-1


Smad anchor for receptor activation


Triosephosphate isomerase




l-Arginine-glycine amidinotransferase


ADP-ribosylation factor


Isoelectric focusing



This study was supported by a grant from the Korea Health 21 R & D Project, the Ministry of Health & Welfare, Republic of Korea (A080975). H. Kim is grateful to the Brain Korea 21 Project, College of Human Ecology, Yonsei University.


  1. 1.
    Grisham DY. Pathogenic mechanisms loading to Helicobacter pylori-induced inflammation. Eur J Gastroenterol Hepatol. 1992;4:S9–S16.Google Scholar
  2. 2.
    Marshall BJ. Helicobacter pylori. Am J Gastroenterol. 1994;89:S116–S128.PubMedGoogle Scholar
  3. 3.
    Sung JW, Yook EJ, Im EH. Prevalence of Helicobacter pylori infection in peptic ulcer and gastric cancer. Korean J Med. 1993;45:77–83.Google Scholar
  4. 4.
    Jang MK, Kim HY, Cho BD; Prospective study for the prevalence of Helicobacter infection in patients with gastric ulcer and duodenal ulcer among Korean population. Korean J Med. 1997;52:457–464.Google Scholar
  5. 5.
    Jung H-K, Na YJ, Moon I-H. Changes of Helicobacter pylori-positive peptic ulcer diseases: based on data from a general hospital. Kor J Gastrointest Endoscop. 2006;32:1–8.Google Scholar
  6. 6.
    Sobala GM, Crabtree JE, Dixon MF, et al. Acute Helicobacter pylori infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut. 1991;32:1415–1418.CrossRefPubMedGoogle Scholar
  7. 7.
    Isaacson PG. Extranodal lumphomas: the MALT concept. Verh Dtsch Ges Pathol. 1992;76:14–23.PubMedGoogle Scholar
  8. 8.
    Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem. 2000;275:16064–16072.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim H, Lim JW, Kim KH. Helicobacter pylori-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: mediation by nuclear factor-kappaB. Scand J Gastroenterol. 2001;36:706–716.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim H, Seo JY, Kim KH. Inhibition of lipid peroxidation, NF-kappaB activation and IL-8 production by rebamipide in Helicobacter pylori-stimulated gastric epithelial cells. Dig Dis Sci. 2000;44:621–628.CrossRefGoogle Scholar
  11. 11.
    Lim JW, Kim H, Kim KH. NF-κB, inducible nitric oxide synthase and apoptosis by Helicobacter pylori infection. Free Rad Biol Med. 2001;31:355–366.CrossRefPubMedGoogle Scholar
  12. 12.
    Seo JY, Kim H, Kim KH. Transcriptional regulation by thiol compounds in Helicobacter pylori-induced interleukin-8 production in human gastric epithelial cells. Ann NY Acad Sci. 2002;973:541–545.CrossRefPubMedGoogle Scholar
  13. 13.
    Chu SH, Kim H, Seo JY, Lim JW, Mukaida N, Kim KH. Role of NF-κB and AP-1 on Helicobacter pylori-induced IL-8 expression in AGS cells. Dig Dis Sci. 2003;48:257–265.CrossRefPubMedGoogle Scholar
  14. 14.
    Peek Jr RM, Moss SF, Tham KT, Perez-Perez GI, Wang S, Miller GG, et al. Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J Nat Cancer Inst. 1997;89: 863–868.Google Scholar
  15. 15.
    Lim JW, Kim H, Kim KH. Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells. Int J Biochem Cell Biol. 2003;35:1284–1296.CrossRefPubMedGoogle Scholar
  16. 16.
    Baek HY, Lim JW, Kim H, et al. Oxidative stress-related proteome changes in Helicobacter pylori-infected human gastric mucosa. Biochem J. 2004;379:291–299.CrossRefPubMedGoogle Scholar
  17. 17.
    Mobley HL. Defining Helicobacter pylori as a pathogen: strain heterogenicity and virulence. Am J Med. 1997;100:2S–11S.Google Scholar
  18. 18.
    Graham DY, Yamaoka Y. Disease-specific Helicobacter pylori virulence factors: the unfulfilled promise. Helicobacter Suppl. 2000;1:S3–S9.CrossRefGoogle Scholar
  19. 19.
    Bach S, Markristathis A, Rooter M, Hirschl MA. Gene expression profiling in AGS cells stimulated with Helicobacter pylori isogenic strains (cagA positive or cagA negative). Infect Immun. 2003;701:988–992.Google Scholar
  20. 20.
    Seo JH, Lim JW, Kim H, Kim KH. Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases, AP-1 and NF-κB and induces chemokine expression in gastric epithelial AGS cells. Lab Invest. 2004;84:49–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Seo JH, Lim JW, Yoon JH, Kim H. Proteinase-activated receptor 2 mediates the expression of integrin α5 and β1 in Helicobacter pylori-infected gastric epithelial AGS cells. Digestion. 2009;80:49.CrossRefGoogle Scholar
  22. 22.
    Baek HY, Lim JW, Kim H. Interaction between the Helicobacter pylori CagA and α-pix in gastric epithelial AGS cells. Ann N Y Acad Sci. 2007;1096:18–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Rudi J, Rudy A, Maiwald M, Kuck D, Sieg A, Stremmel W. Direct determination of Helicobacter pylori vacA genotypes and cagA gene in gastric biopsies and relationship to gastrointestinal diseases. Am J Gastroenterol. 1999;94:1525–1531.CrossRefPubMedGoogle Scholar
  24. 24.
    Gunn MC, Stephens JC, Stewart JA, Rathbone BJ, West KP. The significance of cagA and vacA subtypes of Helicobacter pylori in the pathogenesis of inflammation and peptic ulceration. J Clin Pathol. 1998;51:761–764.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JM, Kim JS, Jung HC, Song IS, Kim CY. Virulence factors of Helicobacter pylori in Korean isolates do not influence proinflammatory cytokine gene expression and apoptosis in human gastric epithelial cells, nor do these factors influence the clinical outcome. J Gastroenterol. 2000;35:898–906.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen XJ, Yan J, Shen YF. Dominant cagA/vacA genotypes and coinfection frequency of H. pylori in peptic ulcer or chronic gastritis patients in Zhejiang Province and correlations among different genotypes, coinfection and severity of the diseases. Chin Med J. 2005;118:460–467.Google Scholar
  27. 27.
    Ko JS, Kim KM, Oh YL, Seo JK. cagA, vacA, and iceA genotypes of Helicobacter pylori in Korean children. Pediatr Int. 2008;50:628–631.CrossRefPubMedGoogle Scholar
  28. 28.
    Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol. 1999;37:2274–2279.PubMedGoogle Scholar
  29. 29.
    Cover TL, Tummuru MK, Cao P, Thompson SA, Blaser MJ. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem. 1994;269:10566–10573.PubMedGoogle Scholar
  30. 30.
    Kim JM, Kim JS, Jung HC, Song IS, Kim CY. Upregulated cyclooxygenase-2 inhibits apoptosis of human gastric epithelial cells uninfected with Helicobacter pylori. Dig Dis Sci. 2000;45:2436–2443.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim JM, Kim JS, Jung HC, et al. Helicobacter pylori infection activates NF-kB signaling pathway to induce iNOS and protect human gastric epithelial cells from apoptosis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1171–G1180.PubMedGoogle Scholar
  32. 32.
    Woods AL, Hall PA, Shepherd VA, et al. The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to histological grade, S + G2 + M phase fraction (flow cytometric analysis) and prognosis. Histopathology. 1991;19:21–27.CrossRefPubMedGoogle Scholar
  33. 33.
    Yonemura Y, Kimura H, Fushida S, et al. Analysis of proliferative activity using antiproliferating cell nuclear antigen antibody in gastric cancer tissue specimens obtained by endoscopic biopsy. Cancer. 1993;71:2448–2453.CrossRefPubMedGoogle Scholar
  34. 34.
    Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trans Cell Biol. 2009;19(1):16–23l.CrossRefGoogle Scholar
  35. 35.
    Guo G, Yan-Sanders Y, Lyn-Cook BD, et al. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol. 2003;23:2362–2378.CrossRefPubMedGoogle Scholar
  36. 36.
    Yu JH, Yun SY, Lim JW, Kim H, Kim KH. Proteome analysis of rat pancreatic acinar cells: implication for cerulein-induced acute pancreatitis. Proteomics. 2003;3:2446–2453.CrossRefPubMedGoogle Scholar
  37. 37.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72:248–254.CrossRefPubMedGoogle Scholar
  38. 38.
    Lock RA, Cordwell SJ, Coombs GW, Walsh BJ, Forbes GM. Proteome analysis of Helicobacter pylori: major proteins of type strain NCTC 11637. Pathology. 2001;33:365–374.CrossRefPubMedGoogle Scholar
  39. 39.
    Takami Y, Ono T, Fukagawa T, Shibahara K, Nakayama T. Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol Biol Cell. 2007;18:129–141.Google Scholar
  40. 40.
    Fillingham J, Greenblatt JF. A histone code for chromatin assembly. Cell. 2008;134:206–208.CrossRefPubMedGoogle Scholar
  41. 41.
    Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell. 1996;86:887–896.CrossRefPubMedGoogle Scholar
  42. 42.
    Polo SE, Theocharis SE, Klijanienko J, Savignoni A, Asselain B, Vielh P, et al. Chromatin assembly factor-1, a marker of clinical value to distinguish quiescent from proliferating cells. Cancer Res. 2004;64:2371–2381.Google Scholar
  43. 43.
    Naryzhny SN. Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci. 2008;65:3789–3808.Google Scholar
  44. 44.
    Stoimenov I. Helleday T.PCNA on the crossroad of cancer. Biochem Soc Trans. 2009;37(Pt 3):605–613.CrossRefPubMedGoogle Scholar
  45. 45.
    Saadat I, Higashi H, Obuse C, et al. Helicobacter pylori CagA targets PAR1/MAPK kinase to disrupt epithelial cell polarity. Nature. 2008;447:330–334.CrossRefGoogle Scholar
  46. 46.
    Kwok T, Zabler D, Urman S, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449:862–866.CrossRefPubMedGoogle Scholar
  47. 47.
    Snider JL, Allison C, Bellaire BH, Ferrero RL, Cardelli JA. The beta1 integrin activates JNK independent of CgA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem. 2008;283:13952–13963.CrossRefPubMedGoogle Scholar
  48. 48.
    Lim JW, Kim H, Kim JM, Kim JS, Jung HC, Kim KH. Cellular stress-related protein expression in Helicobacter pylori-infected gastric epithelial AGS cells. Int J Biochem Cell Biol. 2004;36:1624–1634.CrossRefPubMedGoogle Scholar
  49. 49.
    Pillinger MH, Marjanovic N, Kim SY, et al. Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and–independent ERK activation. J Biol Chem. 2007;282:18722–18731.CrossRefPubMedGoogle Scholar
  50. 50.
    Ji Y, Shah S, Soanes K, et al. Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis. Oncogene. 2007;27(6):755–762.CrossRefPubMedGoogle Scholar
  51. 51.
    Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev. 2001;81:1461–1497.PubMedGoogle Scholar
  52. 52.
    Huang QQ, Sobkoviak R, Jockheck-Clark AR, et al. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol. 2009;182(8):4965–4973.CrossRefPubMedGoogle Scholar
  53. 53.
    Cappello F, de Macario EC, Marasà L, Zummo G, Macario AJ. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther. 2008;7(6):801–809.CrossRefPubMedGoogle Scholar
  54. 54.
    Tran CT, Fox MF, Vallance P, Leiper JM. Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins. Genomics. 2002;68:101–105.CrossRefGoogle Scholar
  55. 55.
    Zeng X, Liao AJ, Tang HL, Yi L, Xie N, Su Q. Screening human gastric carcinoma-associated antigens by serologic proteome analysis. Ai Zheng. 2007;26:1080–1084.PubMedGoogle Scholar
  56. 56.
    Xin HY, Jiang DJ, Jia SJ, et al. Regulation by DDAH/ADMA pathway of lipopolysaccharide-induced tissue factor expression in endothelial cells. Thromb Haemost. 2007;97:830–838.PubMedGoogle Scholar
  57. 57.
    Jacobi J, Sydow K, von Degenfeld G, et al. Overexpression of DDAH enhances angiogenesis, determined by postnatal neovascularization using the disk angiogenesis system and a murine model of hindlimb ischemia. Circulation. 2005;111:1431–1438.CrossRefPubMedGoogle Scholar
  58. 58.
    Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76:839–885.PubMedGoogle Scholar
  59. 59.
    Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268:21513–21518.PubMedGoogle Scholar
  60. 60.
    Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glcolytic enzymes by hypoxia-inducible factor. J Biol Chem. 1994;269:23757–23763.PubMedGoogle Scholar
  61. 61.
    Gina F, Piyali D, Shipra R, Bharat J, Srikumar C. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003;278:47853–47861.CrossRefGoogle Scholar
  62. 62.
    Kang X, Zhang L, Sun J, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43:618–625.CrossRefPubMedGoogle Scholar
  63. 63.
    Qi YJ, He QY, Ma YF, et al. Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem. 2008;104:1625–1635.CrossRefPubMedGoogle Scholar
  64. 64.
    Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B. Glycolytic enzyme inhibitors in cancer treatment. Expert Opinion Investig Drugs. 2008;17(10):1533–1545.CrossRefGoogle Scholar
  65. 65.
    Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699:35–44.PubMedGoogle Scholar
  66. 66.
    Falini B, Nicoletti I, Bolli N, et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica. 2007;92:519–532.CrossRefPubMedGoogle Scholar
  67. 67.
    Ventura G, De Bandt JP, Segaud F, et al. Overexpression of ornithine aminotransferase: consequences on amino acid homeostasis. Br J Nutr. 2009;101:843–851.CrossRefPubMedGoogle Scholar
  68. 68.
    Luk GD, Marton LJ, Baylin SB. Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science. 1980;210:195–198.CrossRefGoogle Scholar
  69. 69.
    Um JH, Kang CD, Lee BG, Kim DW, Chung BS, Kim SH. Increased and correlated nuclear factor-kappa B and Ku autoantigen activities are associated with development of multidrug resistance. Oncogene. 2001;20:6048–6056.CrossRefPubMedGoogle Scholar
  70. 70.
    Lim JW, Kim H, Kim KH. Expression of Ku70 and Ku80 mediated by NF-κB and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem. 2002;277:46093–46100.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhao H, Cao Y, Grunz H. Expression of Xenopus l-arginine:glycine amidinotransferase (XAT) during early embryonic development. Develop genes Evol. 2006;211:358–360.CrossRefGoogle Scholar
  72. 72.
    Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998;95:779–791.Google Scholar
  73. 73.
    Panopoulou E, Gillooly DJ, Wrana JL, et al. Early endosomal regulation of Smad dependent signaling in endothelial cells. J Biol Chem. 2002;277:18046–18052.CrossRefPubMedGoogle Scholar
  74. 74.
    Hiroi T. Regulation of epithelial junctions by proteins of the ADP-ribosylation factor family. Front Biosci. 2009;14:717–730.CrossRefPubMedGoogle Scholar
  75. 75.
    Myers KR, Casanova JE. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol. 2008;18(4):184–192.CrossRefPubMedGoogle Scholar
  76. 76.
    Smith TF. Diversity of WD-repeat proteins. Subcell Biochem. 2008;48:20–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Ahmad A, Takami Y, Nakayama T. WD repeats of the p48 subunit of chicken chromatin assembly factor-1 required for in vitro interaction with chicken histone deacetylase-2. J Biol Chem. 1999;274:16646–16653.CrossRefPubMedGoogle Scholar
  78. 78.
    Mitsuzawa H, Seino H, Yamao F, Ishihama A. Two WD repeat-containing TATA-binding protein-associated factors in fission yeast that suppress defects in the anaphase-promoting complex. J Biol Chem. 2001;276:17117–17124.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Soon Ok Cho
    • 1
  • Joo Weon Lim
    • 2
  • Jong-Ho Jun
    • 3
  • Kyung Hwan Kim
    • 1
  • Hyeyoung Kim
    • 4
  1. 1.Department of Pharmacology, Brain Korea 21 Project for Medical SciencesYonsei University College of MedicineSeoulKorea
  2. 2.Institute of GastroenterologyYonsei University College of MedicineSeoulKorea
  3. 3.Department of Applied ChemistryKonkuk UniversityChungjuKorea
  4. 4.Department of Food and Nutrition, Brain Korea 21 ProjectYonsei University College of Human EcologySeoulKorea

Personalised recommendations