Digestive Diseases and Sciences

, Volume 54, Issue 11, pp 2318–2324 | Cite as

Genetics and Irritable Bowel Syndrome: From Genomics to Intermediate Phenotype and Pharmacogenetics

  • Michael Camilleri



Familial aggregation and sibling pair studies suggest there is a genetic contribution to the development of irritable bowel syndrome (IBS). The aim of this study was to review the evidence of genetics in IBS based on genetic epidemiology, studies of association with intermediate phenotypes and pharmacogenetics.


Genetic association studies with IBS symptom phenotype have generally provided inconsistent results for many candidate genes investigated, such as SLC6A4, GNB3, and IL-10. There have been no genome-wide association studies in IBS to date. Studies of associations of candidate genes with intermediate phenotypes suggest associations with pathophysiological mechanisms of motor and sensory functions; however, these results also require replication. Pharmacogenetics studies illustrate the potential of genetics to impact on response to therapy, as observed with SLC6A4 and responses to the 5-HT3 antagonist alosetron and the 5-HT4 agonist, tegaserod.


While the heritable component and genetics in the complex disorder of IBS are still poorly understood, studies of the associations of spontaneous genetic variations and altered functions may provide novel insights of the mechanisms contributing to the disease.


Epidemiology DNA SLC6A4 ADRA2A COMT IL-10 



Dr. Camilleri is funded in part by grants RO1-DK-54681 and K24-DK-02638 from National Institutes of Health. The assistance of Paula J. Carlson BS is gratefully acknowledged.


  1. 1.
    Kalantar JS, Locke GR 3rd, Zinsmeister AR, Beighley CM, Talley NJ. Familial aggregation of irritable bowel syndrome: a prospective study. Gut. 2003;52:1703–1707.CrossRefPubMedGoogle Scholar
  2. 2.
    Saito YA, Zimmerman JM, Harmsen WS, et al. Irritable bowel syndrome aggregates strongly in families: a family-based case-control study. Neurogastroenterol Motil. 2008;7:790–797.CrossRefGoogle Scholar
  3. 3.
    Morris-Yates A, Talley NJ, Boyce PM, et al. Evidence of a genetic contribution to functional bowel disorder. Am J Gastroenterol. 1998;93:1311–1317.CrossRefPubMedGoogle Scholar
  4. 4.
    Levy RL, Jones KR, Whitehead WE, et al. Irritable bowel syndrome in twins: heredity and social learning both contribute to etiology. Gastroenterology. 2001;121:799–804.CrossRefPubMedGoogle Scholar
  5. 5.
    Mohammed I, Cherkas LF, Riley SA, et al. Genetic influences in irritable bowel syndrome: a twin study. Am J Gastroenterol. 2005;100:1340–1344.CrossRefPubMedGoogle Scholar
  6. 6.
    Bengtson MB, Ronning T, Vatn MH, et al. Irritable bowel syndrome in twins: genes and environment. Gut. 2006;55:1754–1759.CrossRefPubMedGoogle Scholar
  7. 7.
    Lembo A, Zaman M, Jones M, et al. Influence of genetics on irritable bowel syndrome, gastro-oesophageal reflux and dyspepsia: a twin study. Aliment Pharmacol Ther. 2007;25:1343–1350.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonsalkorale WM, Perrey C, Pravica V, Whorwell PJ, Hutchinson IV. Interleukin 10 genotypes in irritable bowel syndrome: evidence for an inflammatory component? Gut. 2003;52:91–93.CrossRefPubMedGoogle Scholar
  9. 9.
    van der Veek PP, van den Berg M, de Kroon YE, Verspaget HW, Masclee AA. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am J Gastroenterol. 2005;100:2510–2516.CrossRefPubMedGoogle Scholar
  10. 10.
    Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274:1527–1531.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy DL, Lerner A, Rudnick G, Lesch KP. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv. 2004;4:109–123.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim HJ, Camilleri M, Carlson PJ, et al. Association of distinct α2 adrenoceptor and serotonin-transporter polymorphisms associated with constipation and somatic symptoms in functional gastrointestinal disorders. Gut. 2004;53:829–837.CrossRefPubMedGoogle Scholar
  13. 13.
    Pata C, Erdal ME, Derici E, Yazar A, Kanik A, Ulu O. Serotonin transporter gene polymorphism in irritable bowel syndrome. Am J Gastroenterol. 2002;97:1780–1784.CrossRefPubMedGoogle Scholar
  14. 14.
    Van Kerkhoven LA, Laheij RJ, Jansen JB. Meta-analysis: a functional polymorphism in the gene encoding for activity of the serotonin transporter protein is not associated with the irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:979–986.PubMedGoogle Scholar
  15. 15.
    Kohen R, Jarrett ME, Cain KC, Jun SE, Navaja GP, Symonds S, Heitkemper MM. The serotonin transporter polymorphism rs25531 is associated with irritable bowel syndrome. Dig Dis Sci. 2009. doi: 10.1007/s10620-008-0666-3.
  16. 16.
    Wang BM, Wang YM, Zhang WM, et al. Serotonin transporter gene polymorphism in irritable bowel syndrome. Zhong-Hua Nei Ke Za Zhi Chin J Intern Med. 2004;43:439–441.Google Scholar
  17. 17.
    Yeo A, Boyd P, Lumsden S, et al. Association between a functional polymorphism in the serotonin transporter gene and diarrhoea predominant irritable bowel syndrome in women. Gut. 2004;53:1452–1458.CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Nie Y, Xie J, et al. The association of serotonin transporter genetic polymorphisms and irritable bowel syndrome and its influence on tegaserod treatment in Chinese patients. Dig Dis Sci. 2000;52:2942–2949.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Pata C, Erdal E, Yazc K, Camdeviren H, Ozkaya M, Ulu O. Association of the −1438 G/A and 102 T/C polymorphism of the 5-HT2A receptor gene with irritable bowel syndrome 5-HT2A gene polymorphism in irritable bowel syndrome. J Clin Gastroenterol. 2004;38:561–566.CrossRefPubMedGoogle Scholar
  21. 21.
    Kapeller J, Houghton LA, Mönnikes H, et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum Mol Genet. 2008;17:2967–2977.CrossRefPubMedGoogle Scholar
  22. 22.
    Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002;347:1135–1142.CrossRefPubMedGoogle Scholar
  23. 23.
    Kohli U, Muszkat M, Sofowora GG, Harris PA, Friedman EA, Dupont WD, Scheinin M, Wood AJ, Stein CM, Kurnik D. Effects of variation in the human alpha(2A)- and alpha(2C)-adrenoceptor genes on cognitive tasks and pain perception. Eur J Pain. 2009 May 5 [Epub ahead of print].Google Scholar
  24. 24.
    Nackley AG, Shabalina SA, Tchivileva IE, et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science. 2006;314:1930–1933.CrossRefPubMedGoogle Scholar
  25. 25.
    Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyl transferase pharmacogenetics: description of a functional polymorphisms and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6:243–250.CrossRefPubMedGoogle Scholar
  26. 26.
    Tahara T, Arisawa T, Shibata T, Nakamura M, Wang F, Hirata I. COMT gene val158met polymorphism in patients with dyspeptic symptoms. Hepatogastroenterology. 2008;55:979–982.PubMedGoogle Scholar
  27. 27.
    Miller LJ. G protein-coupled receptor structures, molecular associations, and modes of regulation. Ann N Y Acad Sci. 2008;1144:1–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Holtmann G, Siffert W, Haag S, et al. G-protein beta 3 subunit 825 CC genotype is associated with unexplained (functional) dyspepsia. Gastroenterology. 2004;126:971–979.CrossRefPubMedGoogle Scholar
  29. 29.
    Camilleri CE, Carlson PJ, Camilleri M, et al. A study of candidate genotypes associated with dyspepsia in a U.S. community. Am J Gastroenterol. 2006;101:581–592.CrossRefPubMedGoogle Scholar
  30. 30.
    Andresen V, Camilleri M, Kim HJ, et al. Is there an association between GNbeta3–C825T genotype and lower functional gastrointestinal disorders? Gastroenterology. 2006;130:1985–1994.CrossRefPubMedGoogle Scholar
  31. 31.
    Saito YA, Locke GRIII, Zimmerman JM, et al. A genetic association study of 5-HTT LPR and GNbeta3 C825T polymorphisms with irritable bowel syndrome. Neurogastroenterol Motil. 2007;19:465–470.CrossRefPubMedGoogle Scholar
  32. 32.
    Holtmann G, Siffert W, Grote E, et al. G-protein mediated receptor-cell-coupling as a predictor for the long-term response to treatment in patients with functional dyspepsia. Gastroenterology. 2003;124:A80.CrossRefGoogle Scholar
  33. 33.
    Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389–402.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Q, Ito M, Adams K, et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet A. 2004;131:50–58.CrossRefPubMedGoogle Scholar
  35. 35.
    Camilleri M, Carlson P, Zinsmeister AR, et al. Mitochondrial DNA and gastrointestinal motor and sensory functions in health and functional gastrointestinal disorders. Am J Physiol. 2009;296:G510–G516.Google Scholar
  36. 36.
    Saito YA, Strege PR, Tester DJ, et al. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am J Physiol. 2009;296:G211–G218.Google Scholar
  37. 37.
    Huang GH, Hsieh CC, Chen CH, Chen WJ. Statistical validation of endophenotypes using a surrogate endpoint analytic analogue. Genet Epidemiol. 2009 Feb 4 [Epub ahead of print].Google Scholar
  38. 38.
    Camilleri M, Carlson P, McKinzie S, et al. Genetic variation in endocannabinoid metabolism, gastrointestinal motility and sensation. Am J Physiol. 2008;294:G13–G19.Google Scholar
  39. 39.
    Camilleri M, Busciglio I, Carlson P, et al. Candidate genes and sensory functions in health and irritable bowel syndrome. Am J Physiol. 2008;295:G219–G225.Google Scholar
  40. 40.
    Fukudo S, Kanazawa M, Mizuno T, Hamaguchi T, Kano M, Watanabe S, Sagami Y, Shoji T, Endo Y, Hongo M, Itoyama Y, Yanai K, Tashiro M, Aoki M. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage. 2009 May 6 [Epub ahead of print].Google Scholar
  41. 41.
    D’Amato M, Bruce S, Bresso F, et al. Neuropeptide s receptor 1 gene polymorphism is associated with susceptibility to inflammatory bowel disease. Gastroenterology. 2007;133:808–817.CrossRefPubMedGoogle Scholar
  42. 42.
    Carlson P, Camilleri M, Zinsmeister AR, et al. Neuropeptide S receptor 1 (NPSR1) gene polymorphism is associated with susceptibility to altered colonic transit and rectal sensitivity in patients with functional gastrointestinal disorders. Gastroenterology. 2009;136(Suppl. 1):402.Google Scholar
  43. 43.
    Camilleri M, Atanasova E, Carlson PJ, et al. Serotonin transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology. 2002;123:425–432.CrossRefPubMedGoogle Scholar
  44. 44.
    Camilleri M, Busciglio I, Carlson P, et al. Pharmacogenetics of low dose clonidine in irritable bowel syndrome. Neurogastroenterol Motil. 2009;21:399–410.CrossRefPubMedGoogle Scholar
  45. 45.
    Thanassoulis G, O’Donnell CJ. Mendelian randomization: Nature’s randomized trial in the post–genome era. JAMA. 2009;301:2386–2388.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER)College of Medicine, Mayo ClinicRochesterUSA

Personalised recommendations