Skip to main content

Advertisement

Log in

Mechanisms and Potential Applications of Intestinal Electrical Stimulation

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Purpose

Electrical stimulation of the gut has recently been under intensive investigation and various studies have revealed therapeutic potentials of gastrointestinal electrical stimulation for gastrointestinal motility disorders and obesity. While there have been a number of reviews on gastric electrical stimulation, there is a lack of systematic reviews on intestinal electrical stimulation. The aim of this review is to provide an overview on the effects, mechanisms, and applications of intestinal electrical stimulation.

Results

We evaluated published data on intestinal electrophysiology, pathophysiology, and different methodologies on intestinal electrical stimulation and its possible mechanisms in both research and clinical settings using the MEDLINE database for English articles from 1963 to 2008. Based on this systematic review, intestinal electrical stimulation has been reported to alter intestinal slow waves, contractions and transit; the effects were mediated via both vagal and adrenergic pathways. Intestinal electrical stimulation has been reported to have potentials for treating various intestinal motility disorders and obesity.

Conclusions

It is concluded that intestinal electrical stimulation may have promising applications for treating motility disorders associated with altered intestinal contractile activity. The most recent studies have revealed possible applications of intestinal electrical stimulation for the treatment of obesity. Basic research results are promising; however, further clinical studies are needed to bring IES from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bilgutay AM, Wingrove R, Griffen WO, Bonnabeau RC Jr, Lillehei CW. Gastro-intestinal pacing: a new concept in the treatment of ileus. Ann Surg. 1963;158:338–348.

    CAS  PubMed  Google Scholar 

  2. Quast DC, Beall AC Jr, Debakey ME. Clinical evaluation of the gastrointestinal pacer. Surg Gynecol Obstet. 1965;120:35–37.

    CAS  PubMed  Google Scholar 

  3. Berger T, Kewenter J, Kock NG. Response to gastrointestinal pacing: antral, duodenal and jejunal motility in control and postoperative patients. Ann Surg. 1966;164:139–144.

    Article  CAS  PubMed  Google Scholar 

  4. Moran JM, Nabseth DC. Electrical stimulation of the bowel. A controlled clinical study. Arch Surg. 1965;91:449–451.

    CAS  PubMed  Google Scholar 

  5. Bunker CE, Johnson LP, Nelsen TS. Chronic in situ studies of the electrical activity of the small intestine. Arch Surg. 1967;95:259–268.

    CAS  PubMed  Google Scholar 

  6. Szurszewski JH, Elveback LR, Code CF. Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol. 1970;218:1468–1473.

    CAS  PubMed  Google Scholar 

  7. Hermon-Taylor J, Code CF. Localization of the duodenal pacemaker and its role in the organization of duodenal myoelectric activity. Gut. 1971;12:40–47.

    Article  CAS  PubMed  Google Scholar 

  8. Sarna SK, Bowes KL, Daniel EE. Gastric pacemakers. Gastroenterology. 1976;70:226–231.

    CAS  PubMed  Google Scholar 

  9. Hinder RA, Kelly KA. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg. 1977;133:29–33.

    Article  CAS  PubMed  Google Scholar 

  10. Richter HMIII, Kelly KA. Effect of transection and pacing on human jejunal pacesetter potentials. Gastroenterology. 1986;91:1380–1385.

    PubMed  Google Scholar 

  11. Becker JM, Sava P, Kelly KA, Shturman L. Intestinal pacing for canine postgastrectomy dumping. Gastroenterology. 1983;84:383–387.

    CAS  PubMed  Google Scholar 

  12. Kelly KA, La Force RC. Pacing the canine stomach with electric stimulation. Am J Physiol. 1972;222:588–594.

    CAS  PubMed  Google Scholar 

  13. McCallum RW, Chen JD, Lin Z, Schirmer BD, Williams RD, Ross RA. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology. 1998;114:456–461.

    Article  CAS  PubMed  Google Scholar 

  14. Abell T, McCallum R, Hocking M, et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology. 2003;125:421–428.

    Article  PubMed  Google Scholar 

  15. Zhang J, Chen JD. Systematic review: applications and future of gastric electrical stimulation. Aliment Pharmacol Ther. 2006;24:991–1002.

    Article  CAS  PubMed  Google Scholar 

  16. Kelly KA. Pacing the gut. Gastroenterology. 1992;103:1967–1969.

    CAS  PubMed  Google Scholar 

  17. Lin Z, Forster J, Sarosiek I, McCallum RW. Treatment of gastroparesis with electrical stimulation. Dig Dis Sci. 2003;48:837–848.

    Article  PubMed  Google Scholar 

  18. Miedema BW, Sarr MG, Kelly KA. Pacing the human stomach. Surgery. 1992;111:143–150.

    CAS  PubMed  Google Scholar 

  19. Lin Z, Chen JD. Advances in gastrointestinal electrical stimulation. Crit Rev Biomed Eng. 2002;30:419–457.

    Article  PubMed  Google Scholar 

  20. Eagon JC, Soper NJ. Gastrointestinal pacing. Surg Clin North Am. 1993;73:1161–1172.

    CAS  PubMed  Google Scholar 

  21. Bortolotti M. The “electrical way” to cure gastroparesis. Am J Gastroenterol. 2002;97:1874–1883.

    PubMed  Google Scholar 

  22. Cullen JJ, Kelly KA. The future of intestinal pacing. Gastroenterol Clin North Am. 1994;23:391–402.

    CAS  PubMed  Google Scholar 

  23. Soper NJ, Geisler KL, Sarr MG, Kelly KA, Zinsmeister AR. Regulation of canine jejunal transit. Am J Physiol. 1990;259:G928–G933.

    CAS  PubMed  Google Scholar 

  24. Soper NJ, Saar MG, Kelly KA. Human duodenal myoelectric activity after operation and with pacing. Surgery. 1990;107:63–68.

    CAS  PubMed  Google Scholar 

  25. Christensen J, Schedl HP, Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology. 1966;50:309–315.

    CAS  PubMed  Google Scholar 

  26. Akwari OE, Kelley KA, Steinbach JH, Code CF. Electric pacing of intact and transected canine small intestine and its computer model. Am J Physiol. 1975;229:1188–1197.

    CAS  PubMed  Google Scholar 

  27. Karlstrom LH, Soper NJ, Kelly KA, Phillips SF. Ectopic jejunal pacemakers and enterogastric reflux after roux gastrectomy: effect of intestinal pacing. Surgery. 1989;106:486–495.

    CAS  PubMed  Google Scholar 

  28. Thuneberg L. Interstitial cells of cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130.

    CAS  PubMed  Google Scholar 

  29. Faussone-Pellegrini MS, Pantalone D, Cortesini C. An ultrastructural study of the interstitial cells of cajal of the human stomach. J Submicrosc Cytol Pathol. 1989;21:439–460.

    CAS  PubMed  Google Scholar 

  30. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.

    CAS  PubMed  Google Scholar 

  31. Ordog T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518(Pt 1):257–269.

    Article  CAS  PubMed  Google Scholar 

  32. Lee JC, Thuneberg L, Berezin I, Huizinga JD. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of cajal. Am J Physiol. 1999;277:G409–G423.

    CAS  PubMed  Google Scholar 

  33. Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol. 1998;513(Pt 1):203–213.

    Article  CAS  PubMed  Google Scholar 

  34. Thomsen L, Robinson TL, Lee JC, et al. Interstitial cells of cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848–851.

    Article  CAS  PubMed  Google Scholar 

  35. Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–97.

    CAS  PubMed  Google Scholar 

  36. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of cajal and for intestinal pacemaker activity. Nature. 1995;373:347–349.

    Article  CAS  PubMed  Google Scholar 

  37. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol. 1995;269:C1577–C1585.

    CAS  PubMed  Google Scholar 

  38. Hou X, Yin J, Liu J, Pasricha PJ, Chen JD. In vivo gastric and intestinal slow waves in w/wv mice. Dig Dis Sci. 2005;50:1335–1341.

    Article  PubMed  Google Scholar 

  39. Yin J, Hou X, Chen JD. Roles of interstitial cells of cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci. 2006;51:1818–1823.

    Article  PubMed  Google Scholar 

  40. Sarna SK. Are interstitial cells of cajal plurifunction cells in the gut? Am J Physiol Gastrointest Liver Physiol. 2008;294:G372–G390.

    Article  CAS  PubMed  Google Scholar 

  41. Malysz J, Thuneberg L, Mikkelsen HB, Huizinga JD. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of cajal. Am J Physiol. 1996;271:G387–G399.

    CAS  PubMed  Google Scholar 

  42. de Lavernhe-Lemaire MC, Decaud-Laroche J, Boiron M, Thouvenot J. Gastroduodenal electric activity, in situ, during anesthesia and recovery. Study in chronic electrode-carrying rats. Arch Int Physiol Biochim. 1986;94:19–28.

    Article  PubMed  Google Scholar 

  43. Waldhausen JH, Shaffrey ME, Skenderis BSII, Jones RS, Schirmer BD. Gastrointestinal myoelectric and clinical patterns of recovery after laparotomy. Ann Surg. 1990;211:777–784. discussion 785.

    Article  CAS  PubMed  Google Scholar 

  44. Seidel SA, Hegde SS, Bradshaw LA, Ladipo JK, Richards WO. Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol. 1999;277:G993–G999.

    CAS  PubMed  Google Scholar 

  45. Sullivan MA, Snape WJ Jr, Matarazzo SA, Petrokubi RJ, Jeffries G, Cohen S. Gastrointestinal myoelectrical activity in idiopathic intestinal pseudo-obstruction. N Engl J Med. 1977;297:233–238.

    Article  CAS  PubMed  Google Scholar 

  46. Chen JD, Schirmer BD, McCallum RW. Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans Biomed Eng. 1993;40:598–602.

    Article  CAS  PubMed  Google Scholar 

  47. Bjorck S, Kelly KA, Phillips SF. Mechanisms of enhanced canine enteric absorption with intestinal pacing. Am J Physiol. 1987;252:G548–G553.

    CAS  PubMed  Google Scholar 

  48. Qi H, Liu S, Chen JD. Dual-pulse intestinal electrical stimulation normalizes intestinal dysrhythmia and improves symptoms induced by vasopressin in fed state in dogs. Neurogastroenterol Motil. 2007;19:411–418.

    Article  CAS  PubMed  Google Scholar 

  49. Yin J, Chen J. Excitatory effects of synchronized intestinal electrical stimulation on small intestinal motility in dogs. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1190–G1195.

    Article  CAS  PubMed  Google Scholar 

  50. Liu S, Hou X, Chen JD. Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake. Am J Gastroenterol. 2005;100:792–796.

    Article  PubMed  Google Scholar 

  51. Lin X, Peters LJ, Hayes J, Chen JD. Entrainment of segmental small intestinal slow waves with electrical stimulation in dogs. Dig Dis Sci. 2000;45:652–656.

    Article  CAS  PubMed  Google Scholar 

  52. Collin J, Kelly KA, Phillips SF. Absorption from the jejunum is increased by forward and backward pacing. Br J Surg. 1979;66:489–492.

    Article  CAS  PubMed  Google Scholar 

  53. Lin X, Hayes J, Peters LJ, Chen JD. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann Biomed Eng. 2000;28:582–587.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, McCallum RW. Electrogastrography: Principles and Applications. New York: Raven; 1995.

    Google Scholar 

  55. You CH, Chey WY, Lee KY, Menguy R, Bortoff A. Gastric and small intestinal myoelectric dysrhythmia associated with chronic intractable nausea and vomiting. Ann Intern Med. 1981;95:449–451.

    CAS  PubMed  Google Scholar 

  56. Abell TL, Kim CH, Malagelada JR. Idiopathic cyclic nausea and vomiting—a disorder of gastrointestinal motility? Mayo Clin Proc. 1988;63:1169–1175.

    CAS  PubMed  Google Scholar 

  57. Schuffler MD. Chronic intestinal pseudo-obstruction syndromes. Med Clin North Am. 1981;65:1331–1358.

    CAS  PubMed  Google Scholar 

  58. Golzarian J, Staton DJ, Wikswo JP Jr, Friedman RN, Richards WO. Diagnosing intestinal ischemia using a noncontact superconducting quantum interference device. Am J Surg. 1994;167:586–592.

    Article  CAS  PubMed  Google Scholar 

  59. Ladipo JK, Bradshaw LA, Halter S, Richards WO. Changes in intestinal electrical activity during ischaemia correlate to pathology. West Afr J Med. 2003;22:1–4.

    CAS  PubMed  Google Scholar 

  60. Morrison P, Miedema BW, Kohler L, Kelly KA. Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am J Surg. 1990;160:252–256.

    Article  CAS  PubMed  Google Scholar 

  61. Abo M, Kono T, Wang Z, Chen JD. Impairment of gastric and jejunal myoelectrical activity during rectal distension in dogs. Dig Dis Sci. 2000;45:1731–1736.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu H, Sallam H, Chen DD, Chen JD. Therapeutic potential of synchronized gastric electrical stimulation for gastroparesis: enhanced gastric motility in dogs. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1875–R1881.

    CAS  PubMed  Google Scholar 

  63. Mintchev M, Bowes K. Computer model of gastric electrical stimulation. Ann Biomed Eng. 1997;25:726–730.

    Article  CAS  PubMed  Google Scholar 

  64. Mintchev MP, Sanmiguel CP, Amaris M, Bowes KL. Microprocessor-controlled movement of solid gastric content using sequential neural electrical stimulation. Gastroenterology. 2000;118:258–263.

    Article  CAS  PubMed  Google Scholar 

  65. Reiser SB, Schusdziarra V, Bollschweiler E, Holscher AH, Siewert JR. Effect of enteric pacing on intestinal motility and hormone secretion in dogs with short bowel. Gastroenterology. 1991;101:100–106.

    CAS  PubMed  Google Scholar 

  66. Liu S, Liu J, Chen JD. Neural mechanisms involved in the inhibition of intestinal motility induced by intestinal electrical stimulation in conscious dogs. Neurogastroenterol Motil. 2006;18:62–68.

    Article  CAS  PubMed  Google Scholar 

  67. Stanghellini V, Cogliandro RF, de Giorgio R, Barbara G, Salvioli B, Corinaldesi R. Chronic intestinal pseudo-obstruction: manifestations, natural history and management. Neurogastroenterol Motil. 2007;19:440–452.

    Article  CAS  PubMed  Google Scholar 

  68. Chen JD, Lin HC. Electrical pacing accelerates intestinal transit slowed by fat-induced ileal brake. Dig Dis Sci. 2003;48:251–256.

    Article  CAS  PubMed  Google Scholar 

  69. Liu J, Qiao X, Hou X, Chen JD. Effect of intestinal pacing on small bowel transit and nutrient absorption in healthy volunteers. Obes Surg. 2009;19:196–201.

    Article  PubMed  Google Scholar 

  70. Collin J, Kelly KA, Phillips SF. Increased canine jejunal absorption of water, glucose, and sodium with intestinal pacing. Am J Dig Dis. 1978;23:1121–1124.

    Article  CAS  PubMed  Google Scholar 

  71. O’Connell PR, Kelly KA. Enteric transit and absorption after canine ileostomy. Effect of pacing. Arch Surg. 1987;122:1011–1017.

    PubMed  Google Scholar 

  72. Hoepfner MT, Kelly KA, Sarr MG. Pacing the canine ileostomy. Surgery. 1988;104:476–481.

    CAS  PubMed  Google Scholar 

  73. Sawchuk A, Nogami W, Goto S, et al. Reverse electrical pacing improves intestinal absorption and transit time. Surgery. 1986;100:454–460.

    CAS  PubMed  Google Scholar 

  74. Karlstrom L, Kelly KA. Ectopic jejunal pacemakers and gastric emptying after roux gastrectomy: effect of intestinal pacing. Surgery. 1989;106:867–871.

    CAS  PubMed  Google Scholar 

  75. Sarr MG, Kelly KA, Gladen HE. Electrical control of canine jejunal propulsion. Am J Physiol. 1981;240:G355–G360.

    CAS  PubMed  Google Scholar 

  76. Layzell T, Collin J. Retrograde electrical pacing of the small intestine—a new treatment for the short bowel syndrome? Br J Surg. 1981;68:711–713.

    Article  CAS  PubMed  Google Scholar 

  77. Sun Y, Chen J. Intestinal electric stimulation decreases fat absorption in rats: therapeutic potential for obesity. Obes Res. 2004;12:1235–1242.

    Article  CAS  PubMed  Google Scholar 

  78. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol. 2002;282:G443–G449.

    CAS  PubMed  Google Scholar 

  79. Kerlin P, Zinsmeister A, Phillips S. Motor responses to food of the ileum, proximal colon, and distal colon of healthy humans. Gastroenterology. 1983;84:762–770.

    CAS  PubMed  Google Scholar 

  80. Kelly KA, Code CF. Duodenal-gastric reflux and slowed gastric emptying by electrical pacing of the canine duodenal pacesetter potential. Gastroenterology. 1977;72:429–433.

    CAS  PubMed  Google Scholar 

  81. Cranley B, Kelly KA, Go VL, McNichols LA. Enhancing the anti-dumping effect of roux gastrojejunostomy with intestinal pacing. Ann Surg. 1983;198:516–524.

    Article  CAS  PubMed  Google Scholar 

  82. Liu S, Wang L, Chen JD. Cross-talk along gastrointestinal tract during electrical stimulation: effects and mechanisms of gastric/colonic stimulation on rectal tone in dogs. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1195–G1198.

    Article  CAS  PubMed  Google Scholar 

  83. Xu X, Lei Y, Liu S, Chen JD. Inhibitory effects of gastrointestinal electrical stimulation on rectal tone are both organ-specific and distance-related in dogs. Dis Colon Rectum. 2008;51:467–473.

    Article  PubMed  Google Scholar 

  84. Yin J, Ouyang H, Chen JD. Potential of intestinal electrical stimulation for obesity: a preliminary canine study. Obesity (Silver Spring). 2007;15:1133–1138.

    Article  Google Scholar 

  85. Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R78–R82.

    CAS  PubMed  Google Scholar 

  86. Ouyang H, Yin J, Chen JD. Gastric or intestinal electrical stimulation-induced increase in gastric volume is correlated with reduced food intake. Scand J Gastroenterol. 2006;41:1261–1266.

    Article  PubMed  Google Scholar 

  87. Xu X, Zhu H, Chen JD. Pyloric electrical stimulation reduces food intake by inhibiting gastric motility in dogs. Gastroenterology. 2005;128:43–50.

    Article  PubMed  Google Scholar 

  88. Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocr Rev. 1999;20:805–875.

    Article  CAS  PubMed  Google Scholar 

  89. AACE/ACE. Position statement on the prevention, diagnosis, and treatment of obesity. Endocr Pract. 1998;4:297–330.

    Google Scholar 

  90. Sagar PM. Surgical treatment of morbid obesity. Br J Surg. 1995;82:732–739.

    Article  CAS  PubMed  Google Scholar 

  91. Cigaina VV, Saggioro A, Rigo VV, Pinato G, Ischai S. Long-term effects of gastric pacing to reduce feed intake in swine. Obes Surg. 1996;6:250–253.

    Article  PubMed  Google Scholar 

  92. Cigaina V. Gastric pacing as therapy for morbid obesity: preliminary results. Obes Surg. 2002;12(Suppl 1):12S–16S.

    Article  PubMed  Google Scholar 

  93. De Luca M, Segato G, Busetto L, et al. Progress in implantable gastric stimulation: summary of results of the European multi-center study. Obes Surg. 2004;14(Suppl 1):S33–S39.

    Article  PubMed  Google Scholar 

  94. Ouyang H, Yin J, Chen JD. Therapeutic potential of gastric electrical stimulation for obesity and its possible mechanisms: a preliminary canine study. Dig Dis Sci. 2003;48:698–705.

    Article  PubMed  Google Scholar 

  95. Xu J, McNearney TA, Chen JD. Gastric/intestinal electrical stimulation modulates appetite regulatory peptide hormones in the stomach and duodenum in rats. Obes Surg. 2007;17:406–413.

    Article  PubMed  Google Scholar 

  96. Sun Y, Qin C, Foreman RD, Chen JD. Intestinal electric stimulation modulates neuronal activity in the nucleus of the solitary tract in rats. Neurosci Lett. 2005;385:64–69.

    Article  CAS  PubMed  Google Scholar 

  97. Xu X, Pasricha PJ, Chen JD. Feasibility of gastric electrical stimulation by use of endoscopically placed electrodes. Gastrointest Endosc. 2007;66:981–986.

    Article  PubMed  Google Scholar 

  98. Elfvin A, Andersson S, Abrahamsson H, Edebo A, Simren M, Lonroth H. Percutaneous implantation of gastric electrodes—a novel technique applied in animals and in patients. Neurogastroenterol Motil. 2007;19:103–109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the National Institutes of Health (DK063733, DK055437 and DK075155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiande D. Z. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, J., Chen, J.D.Z. Mechanisms and Potential Applications of Intestinal Electrical Stimulation. Dig Dis Sci 55, 1208–1220 (2010). https://doi.org/10.1007/s10620-009-0884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0884-3

Keywords

Navigation