Digestive Diseases and Sciences

, Volume 55, Issue 5, pp 1208–1220 | Cite as

Mechanisms and Potential Applications of Intestinal Electrical Stimulation

  • Jieyun Yin
  • Jiande D. Z. Chen



Electrical stimulation of the gut has recently been under intensive investigation and various studies have revealed therapeutic potentials of gastrointestinal electrical stimulation for gastrointestinal motility disorders and obesity. While there have been a number of reviews on gastric electrical stimulation, there is a lack of systematic reviews on intestinal electrical stimulation. The aim of this review is to provide an overview on the effects, mechanisms, and applications of intestinal electrical stimulation.


We evaluated published data on intestinal electrophysiology, pathophysiology, and different methodologies on intestinal electrical stimulation and its possible mechanisms in both research and clinical settings using the MEDLINE database for English articles from 1963 to 2008. Based on this systematic review, intestinal electrical stimulation has been reported to alter intestinal slow waves, contractions and transit; the effects were mediated via both vagal and adrenergic pathways. Intestinal electrical stimulation has been reported to have potentials for treating various intestinal motility disorders and obesity.


It is concluded that intestinal electrical stimulation may have promising applications for treating motility disorders associated with altered intestinal contractile activity. The most recent studies have revealed possible applications of intestinal electrical stimulation for the treatment of obesity. Basic research results are promising; however, further clinical studies are needed to bring IES from bench to bedside.


Electrical stimulation Small intestine Gastrointestinal motility Obesity Mechanisms 



This work was partially supported by grants from the National Institutes of Health (DK063733, DK055437 and DK075155).


  1. 1.
    Bilgutay AM, Wingrove R, Griffen WO, Bonnabeau RC Jr, Lillehei CW. Gastro-intestinal pacing: a new concept in the treatment of ileus. Ann Surg. 1963;158:338–348.PubMedGoogle Scholar
  2. 2.
    Quast DC, Beall AC Jr, Debakey ME. Clinical evaluation of the gastrointestinal pacer. Surg Gynecol Obstet. 1965;120:35–37.PubMedGoogle Scholar
  3. 3.
    Berger T, Kewenter J, Kock NG. Response to gastrointestinal pacing: antral, duodenal and jejunal motility in control and postoperative patients. Ann Surg. 1966;164:139–144.CrossRefPubMedGoogle Scholar
  4. 4.
    Moran JM, Nabseth DC. Electrical stimulation of the bowel. A controlled clinical study. Arch Surg. 1965;91:449–451.PubMedGoogle Scholar
  5. 5.
    Bunker CE, Johnson LP, Nelsen TS. Chronic in situ studies of the electrical activity of the small intestine. Arch Surg. 1967;95:259–268.PubMedGoogle Scholar
  6. 6.
    Szurszewski JH, Elveback LR, Code CF. Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Physiol. 1970;218:1468–1473.PubMedGoogle Scholar
  7. 7.
    Hermon-Taylor J, Code CF. Localization of the duodenal pacemaker and its role in the organization of duodenal myoelectric activity. Gut. 1971;12:40–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Sarna SK, Bowes KL, Daniel EE. Gastric pacemakers. Gastroenterology. 1976;70:226–231.PubMedGoogle Scholar
  9. 9.
    Hinder RA, Kelly KA. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am J Surg. 1977;133:29–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Richter HMIII, Kelly KA. Effect of transection and pacing on human jejunal pacesetter potentials. Gastroenterology. 1986;91:1380–1385.PubMedGoogle Scholar
  11. 11.
    Becker JM, Sava P, Kelly KA, Shturman L. Intestinal pacing for canine postgastrectomy dumping. Gastroenterology. 1983;84:383–387.PubMedGoogle Scholar
  12. 12.
    Kelly KA, La Force RC. Pacing the canine stomach with electric stimulation. Am J Physiol. 1972;222:588–594.PubMedGoogle Scholar
  13. 13.
    McCallum RW, Chen JD, Lin Z, Schirmer BD, Williams RD, Ross RA. Gastric pacing improves emptying and symptoms in patients with gastroparesis. Gastroenterology. 1998;114:456–461.CrossRefPubMedGoogle Scholar
  14. 14.
    Abell T, McCallum R, Hocking M, et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology. 2003;125:421–428.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang J, Chen JD. Systematic review: applications and future of gastric electrical stimulation. Aliment Pharmacol Ther. 2006;24:991–1002.CrossRefPubMedGoogle Scholar
  16. 16.
    Kelly KA. Pacing the gut. Gastroenterology. 1992;103:1967–1969.PubMedGoogle Scholar
  17. 17.
    Lin Z, Forster J, Sarosiek I, McCallum RW. Treatment of gastroparesis with electrical stimulation. Dig Dis Sci. 2003;48:837–848.CrossRefPubMedGoogle Scholar
  18. 18.
    Miedema BW, Sarr MG, Kelly KA. Pacing the human stomach. Surgery. 1992;111:143–150.PubMedGoogle Scholar
  19. 19.
    Lin Z, Chen JD. Advances in gastrointestinal electrical stimulation. Crit Rev Biomed Eng. 2002;30:419–457.CrossRefPubMedGoogle Scholar
  20. 20.
    Eagon JC, Soper NJ. Gastrointestinal pacing. Surg Clin North Am. 1993;73:1161–1172.PubMedGoogle Scholar
  21. 21.
    Bortolotti M. The “electrical way” to cure gastroparesis. Am J Gastroenterol. 2002;97:1874–1883.PubMedGoogle Scholar
  22. 22.
    Cullen JJ, Kelly KA. The future of intestinal pacing. Gastroenterol Clin North Am. 1994;23:391–402.PubMedGoogle Scholar
  23. 23.
    Soper NJ, Geisler KL, Sarr MG, Kelly KA, Zinsmeister AR. Regulation of canine jejunal transit. Am J Physiol. 1990;259:G928–G933.PubMedGoogle Scholar
  24. 24.
    Soper NJ, Saar MG, Kelly KA. Human duodenal myoelectric activity after operation and with pacing. Surgery. 1990;107:63–68.PubMedGoogle Scholar
  25. 25.
    Christensen J, Schedl HP, Clifton JA. The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with variety of diseases. Gastroenterology. 1966;50:309–315.PubMedGoogle Scholar
  26. 26.
    Akwari OE, Kelley KA, Steinbach JH, Code CF. Electric pacing of intact and transected canine small intestine and its computer model. Am J Physiol. 1975;229:1188–1197.PubMedGoogle Scholar
  27. 27.
    Karlstrom LH, Soper NJ, Kelly KA, Phillips SF. Ectopic jejunal pacemakers and enterogastric reflux after roux gastrectomy: effect of intestinal pacing. Surgery. 1989;106:486–495.PubMedGoogle Scholar
  28. 28.
    Thuneberg L. Interstitial cells of cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130.PubMedGoogle Scholar
  29. 29.
    Faussone-Pellegrini MS, Pantalone D, Cortesini C. An ultrastructural study of the interstitial cells of cajal of the human stomach. J Submicrosc Cytol Pathol. 1989;21:439–460.PubMedGoogle Scholar
  30. 30.
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. C-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280:97–111.PubMedGoogle Scholar
  31. 31.
    Ordog T, Ward SM, Sanders KM. Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol. 1999;518(Pt 1):257–269.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee JC, Thuneberg L, Berezin I, Huizinga JD. Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of cajal. Am J Physiol. 1999;277:G409–G423.PubMedGoogle Scholar
  33. 33.
    Koh SD, Sanders KM, Ward SM. Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol. 1998;513(Pt 1):203–213.CrossRefPubMedGoogle Scholar
  34. 34.
    Thomsen L, Robinson TL, Lee JC, et al. Interstitial cells of cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848–851.CrossRefPubMedGoogle Scholar
  35. 35.
    Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994;480(Pt 1):91–97.PubMedGoogle Scholar
  36. 36.
    Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of cajal and for intestinal pacemaker activity. Nature. 1995;373:347–349.CrossRefPubMedGoogle Scholar
  37. 37.
    Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol. 1995;269:C1577–C1585.PubMedGoogle Scholar
  38. 38.
    Hou X, Yin J, Liu J, Pasricha PJ, Chen JD. In vivo gastric and intestinal slow waves in w/wv mice. Dig Dis Sci. 2005;50:1335–1341.CrossRefPubMedGoogle Scholar
  39. 39.
    Yin J, Hou X, Chen JD. Roles of interstitial cells of cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci. 2006;51:1818–1823.CrossRefPubMedGoogle Scholar
  40. 40.
    Sarna SK. Are interstitial cells of cajal plurifunction cells in the gut? Am J Physiol Gastrointest Liver Physiol. 2008;294:G372–G390.CrossRefPubMedGoogle Scholar
  41. 41.
    Malysz J, Thuneberg L, Mikkelsen HB, Huizinga JD. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of cajal. Am J Physiol. 1996;271:G387–G399.PubMedGoogle Scholar
  42. 42.
    de Lavernhe-Lemaire MC, Decaud-Laroche J, Boiron M, Thouvenot J. Gastroduodenal electric activity, in situ, during anesthesia and recovery. Study in chronic electrode-carrying rats. Arch Int Physiol Biochim. 1986;94:19–28.CrossRefPubMedGoogle Scholar
  43. 43.
    Waldhausen JH, Shaffrey ME, Skenderis BSII, Jones RS, Schirmer BD. Gastrointestinal myoelectric and clinical patterns of recovery after laparotomy. Ann Surg. 1990;211:777–784. discussion 785.CrossRefPubMedGoogle Scholar
  44. 44.
    Seidel SA, Hegde SS, Bradshaw LA, Ladipo JK, Richards WO. Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol. 1999;277:G993–G999.PubMedGoogle Scholar
  45. 45.
    Sullivan MA, Snape WJ Jr, Matarazzo SA, Petrokubi RJ, Jeffries G, Cohen S. Gastrointestinal myoelectrical activity in idiopathic intestinal pseudo-obstruction. N Engl J Med. 1977;297:233–238.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen JD, Schirmer BD, McCallum RW. Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Trans Biomed Eng. 1993;40:598–602.CrossRefPubMedGoogle Scholar
  47. 47.
    Bjorck S, Kelly KA, Phillips SF. Mechanisms of enhanced canine enteric absorption with intestinal pacing. Am J Physiol. 1987;252:G548–G553.PubMedGoogle Scholar
  48. 48.
    Qi H, Liu S, Chen JD. Dual-pulse intestinal electrical stimulation normalizes intestinal dysrhythmia and improves symptoms induced by vasopressin in fed state in dogs. Neurogastroenterol Motil. 2007;19:411–418.CrossRefPubMedGoogle Scholar
  49. 49.
    Yin J, Chen J. Excitatory effects of synchronized intestinal electrical stimulation on small intestinal motility in dogs. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1190–G1195.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu S, Hou X, Chen JD. Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake. Am J Gastroenterol. 2005;100:792–796.CrossRefPubMedGoogle Scholar
  51. 51.
    Lin X, Peters LJ, Hayes J, Chen JD. Entrainment of segmental small intestinal slow waves with electrical stimulation in dogs. Dig Dis Sci. 2000;45:652–656.CrossRefPubMedGoogle Scholar
  52. 52.
    Collin J, Kelly KA, Phillips SF. Absorption from the jejunum is increased by forward and backward pacing. Br J Surg. 1979;66:489–492.CrossRefPubMedGoogle Scholar
  53. 53.
    Lin X, Hayes J, Peters LJ, Chen JD. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann Biomed Eng. 2000;28:582–587.CrossRefPubMedGoogle Scholar
  54. 54.
    Chen J, McCallum RW. Electrogastrography: Principles and Applications. New York: Raven; 1995.Google Scholar
  55. 55.
    You CH, Chey WY, Lee KY, Menguy R, Bortoff A. Gastric and small intestinal myoelectric dysrhythmia associated with chronic intractable nausea and vomiting. Ann Intern Med. 1981;95:449–451.PubMedGoogle Scholar
  56. 56.
    Abell TL, Kim CH, Malagelada JR. Idiopathic cyclic nausea and vomiting—a disorder of gastrointestinal motility? Mayo Clin Proc. 1988;63:1169–1175.PubMedGoogle Scholar
  57. 57.
    Schuffler MD. Chronic intestinal pseudo-obstruction syndromes. Med Clin North Am. 1981;65:1331–1358.PubMedGoogle Scholar
  58. 58.
    Golzarian J, Staton DJ, Wikswo JP Jr, Friedman RN, Richards WO. Diagnosing intestinal ischemia using a noncontact superconducting quantum interference device. Am J Surg. 1994;167:586–592.CrossRefPubMedGoogle Scholar
  59. 59.
    Ladipo JK, Bradshaw LA, Halter S, Richards WO. Changes in intestinal electrical activity during ischaemia correlate to pathology. West Afr J Med. 2003;22:1–4.PubMedGoogle Scholar
  60. 60.
    Morrison P, Miedema BW, Kohler L, Kelly KA. Electrical dysrhythmias in the roux jejunal limb: cause and treatment. Am J Surg. 1990;160:252–256.CrossRefPubMedGoogle Scholar
  61. 61.
    Abo M, Kono T, Wang Z, Chen JD. Impairment of gastric and jejunal myoelectrical activity during rectal distension in dogs. Dig Dis Sci. 2000;45:1731–1736.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhu H, Sallam H, Chen DD, Chen JD. Therapeutic potential of synchronized gastric electrical stimulation for gastroparesis: enhanced gastric motility in dogs. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1875–R1881.PubMedGoogle Scholar
  63. 63.
    Mintchev M, Bowes K. Computer model of gastric electrical stimulation. Ann Biomed Eng. 1997;25:726–730.CrossRefPubMedGoogle Scholar
  64. 64.
    Mintchev MP, Sanmiguel CP, Amaris M, Bowes KL. Microprocessor-controlled movement of solid gastric content using sequential neural electrical stimulation. Gastroenterology. 2000;118:258–263.CrossRefPubMedGoogle Scholar
  65. 65.
    Reiser SB, Schusdziarra V, Bollschweiler E, Holscher AH, Siewert JR. Effect of enteric pacing on intestinal motility and hormone secretion in dogs with short bowel. Gastroenterology. 1991;101:100–106.PubMedGoogle Scholar
  66. 66.
    Liu S, Liu J, Chen JD. Neural mechanisms involved in the inhibition of intestinal motility induced by intestinal electrical stimulation in conscious dogs. Neurogastroenterol Motil. 2006;18:62–68.CrossRefPubMedGoogle Scholar
  67. 67.
    Stanghellini V, Cogliandro RF, de Giorgio R, Barbara G, Salvioli B, Corinaldesi R. Chronic intestinal pseudo-obstruction: manifestations, natural history and management. Neurogastroenterol Motil. 2007;19:440–452.CrossRefPubMedGoogle Scholar
  68. 68.
    Chen JD, Lin HC. Electrical pacing accelerates intestinal transit slowed by fat-induced ileal brake. Dig Dis Sci. 2003;48:251–256.CrossRefPubMedGoogle Scholar
  69. 69.
    Liu J, Qiao X, Hou X, Chen JD. Effect of intestinal pacing on small bowel transit and nutrient absorption in healthy volunteers. Obes Surg. 2009;19:196–201.CrossRefPubMedGoogle Scholar
  70. 70.
    Collin J, Kelly KA, Phillips SF. Increased canine jejunal absorption of water, glucose, and sodium with intestinal pacing. Am J Dig Dis. 1978;23:1121–1124.CrossRefPubMedGoogle Scholar
  71. 71.
    O’Connell PR, Kelly KA. Enteric transit and absorption after canine ileostomy. Effect of pacing. Arch Surg. 1987;122:1011–1017.PubMedGoogle Scholar
  72. 72.
    Hoepfner MT, Kelly KA, Sarr MG. Pacing the canine ileostomy. Surgery. 1988;104:476–481.PubMedGoogle Scholar
  73. 73.
    Sawchuk A, Nogami W, Goto S, et al. Reverse electrical pacing improves intestinal absorption and transit time. Surgery. 1986;100:454–460.PubMedGoogle Scholar
  74. 74.
    Karlstrom L, Kelly KA. Ectopic jejunal pacemakers and gastric emptying after roux gastrectomy: effect of intestinal pacing. Surgery. 1989;106:867–871.PubMedGoogle Scholar
  75. 75.
    Sarr MG, Kelly KA, Gladen HE. Electrical control of canine jejunal propulsion. Am J Physiol. 1981;240:G355–G360.PubMedGoogle Scholar
  76. 76.
    Layzell T, Collin J. Retrograde electrical pacing of the small intestine—a new treatment for the short bowel syndrome? Br J Surg. 1981;68:711–713.CrossRefPubMedGoogle Scholar
  77. 77.
    Sun Y, Chen J. Intestinal electric stimulation decreases fat absorption in rats: therapeutic potential for obesity. Obes Res. 2004;12:1235–1242.CrossRefPubMedGoogle Scholar
  78. 78.
    Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol. 2002;282:G443–G449.PubMedGoogle Scholar
  79. 79.
    Kerlin P, Zinsmeister A, Phillips S. Motor responses to food of the ileum, proximal colon, and distal colon of healthy humans. Gastroenterology. 1983;84:762–770.PubMedGoogle Scholar
  80. 80.
    Kelly KA, Code CF. Duodenal-gastric reflux and slowed gastric emptying by electrical pacing of the canine duodenal pacesetter potential. Gastroenterology. 1977;72:429–433.PubMedGoogle Scholar
  81. 81.
    Cranley B, Kelly KA, Go VL, McNichols LA. Enhancing the anti-dumping effect of roux gastrojejunostomy with intestinal pacing. Ann Surg. 1983;198:516–524.CrossRefPubMedGoogle Scholar
  82. 82.
    Liu S, Wang L, Chen JD. Cross-talk along gastrointestinal tract during electrical stimulation: effects and mechanisms of gastric/colonic stimulation on rectal tone in dogs. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1195–G1198.CrossRefPubMedGoogle Scholar
  83. 83.
    Xu X, Lei Y, Liu S, Chen JD. Inhibitory effects of gastrointestinal electrical stimulation on rectal tone are both organ-specific and distance-related in dogs. Dis Colon Rectum. 2008;51:467–473.CrossRefPubMedGoogle Scholar
  84. 84.
    Yin J, Ouyang H, Chen JD. Potential of intestinal electrical stimulation for obesity: a preliminary canine study. Obesity (Silver Spring). 2007;15:1133–1138.CrossRefGoogle Scholar
  85. 85.
    Yin J, Zhang J, Chen JD. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol. 2007;293:R78–R82.PubMedGoogle Scholar
  86. 86.
    Ouyang H, Yin J, Chen JD. Gastric or intestinal electrical stimulation-induced increase in gastric volume is correlated with reduced food intake. Scand J Gastroenterol. 2006;41:1261–1266.CrossRefPubMedGoogle Scholar
  87. 87.
    Xu X, Zhu H, Chen JD. Pyloric electrical stimulation reduces food intake by inhibiting gastric motility in dogs. Gastroenterology. 2005;128:43–50.CrossRefPubMedGoogle Scholar
  88. 88.
    Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocr Rev. 1999;20:805–875.CrossRefPubMedGoogle Scholar
  89. 89.
    AACE/ACE. Position statement on the prevention, diagnosis, and treatment of obesity. Endocr Pract. 1998;4:297–330.Google Scholar
  90. 90.
    Sagar PM. Surgical treatment of morbid obesity. Br J Surg. 1995;82:732–739.CrossRefPubMedGoogle Scholar
  91. 91.
    Cigaina VV, Saggioro A, Rigo VV, Pinato G, Ischai S. Long-term effects of gastric pacing to reduce feed intake in swine. Obes Surg. 1996;6:250–253.CrossRefPubMedGoogle Scholar
  92. 92.
    Cigaina V. Gastric pacing as therapy for morbid obesity: preliminary results. Obes Surg. 2002;12(Suppl 1):12S–16S.CrossRefPubMedGoogle Scholar
  93. 93.
    De Luca M, Segato G, Busetto L, et al. Progress in implantable gastric stimulation: summary of results of the European multi-center study. Obes Surg. 2004;14(Suppl 1):S33–S39.CrossRefPubMedGoogle Scholar
  94. 94.
    Ouyang H, Yin J, Chen JD. Therapeutic potential of gastric electrical stimulation for obesity and its possible mechanisms: a preliminary canine study. Dig Dis Sci. 2003;48:698–705.CrossRefPubMedGoogle Scholar
  95. 95.
    Xu J, McNearney TA, Chen JD. Gastric/intestinal electrical stimulation modulates appetite regulatory peptide hormones in the stomach and duodenum in rats. Obes Surg. 2007;17:406–413.CrossRefPubMedGoogle Scholar
  96. 96.
    Sun Y, Qin C, Foreman RD, Chen JD. Intestinal electric stimulation modulates neuronal activity in the nucleus of the solitary tract in rats. Neurosci Lett. 2005;385:64–69.CrossRefPubMedGoogle Scholar
  97. 97.
    Xu X, Pasricha PJ, Chen JD. Feasibility of gastric electrical stimulation by use of endoscopically placed electrodes. Gastrointest Endosc. 2007;66:981–986.CrossRefPubMedGoogle Scholar
  98. 98.
    Elfvin A, Andersson S, Abrahamsson H, Edebo A, Simren M, Lonroth H. Percutaneous implantation of gastric electrodes—a novel technique applied in animals and in patients. Neurogastroenterol Motil. 2007;19:103–109.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Gastroenterology, Department of Internal MedicineUniversity of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations