Digestive Diseases and Sciences

, Volume 54, Issue 7, pp 1425–1431 | Cite as

E2F Promoter-Regulated Oncolytic Adenovirus with p16 Gene Induces Cell Apoptosis and Exerts Antitumor Effect on Gastric Cancer

  • J. Ma
  • X. He
  • W. Wang
  • Y. Huang
  • L. Chen
  • W. Cong
  • J. Gu
  • H. Hu
  • J. Shi
  • L. Li
  • C. Su
Original Article


Replication-competent adenovirus (RCAd) constitutes an alternative in cancer therapy. For obtaining advanced RCAd generations with high oncolytic capability and a good safety profile, we constructed an E2F promoter-regulated RCAd carrying p16 gene, AdE2F-p16, in which the E1a gene was controlled by the E2F promoter. The experimental data showed that the E2F promoter endowed AdE2F-p16 with high specificity in cancer cells. While rarely replicating in normal cells, AdE2F-p16 could replicate in p16-deficient cancer cells, with 2,937- to 160,000-fold increased replicative capability in different cancer cell lines. AdE2F-p16 expressed p16 within cancer cells and led to potent antitumor efficacy in gastric cancer xenografts in nude mice, with a tumor inhibition rate of 59.14%. Due to the combined effects of cancer cell apoptosis induced by p16 expression and oncolysis by virus replication, the E2F promoter-regulated, p16-armed RCAd provides a promising strategy for cancer gene therapy.


Replication-competent adenovirus Gene therapy p16 gene E2F promoter Gastric cancer Apoptosis 



This work was supported by grants from the National Natural Scientific Foundation of China (No. 30572149) and the Scientific and Technological Project of Zhejiang Province, China (No. 2006C30021).


  1. 1.
    Su C, Na M, Chen J, et al. Gene-viral cancer therapy using dual-regulated oncolytic adenovirus with antiangiogenesis gene for increased efficacy. Mol Cancer Res. 2008;6:568–575. doi: 10.1158/1541-7786.MCR-07-0073.PubMedCrossRefGoogle Scholar
  2. 2.
    Yang ZR, Wang HF, Zhao J, et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther. 2007;14:599–615. doi: 10.1038/sj.cgt.7701054.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res. 1995;55:4210–4213.PubMedGoogle Scholar
  4. 4.
    Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther. 2001;3:329–336. doi: 10.1006/mthe.2001.0264.PubMedCrossRefGoogle Scholar
  5. 5.
    Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–358. doi: 10.1038/nrg1066.PubMedCrossRefGoogle Scholar
  6. 6.
    Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771. doi: 10.1172/JCI9180.PubMedCrossRefGoogle Scholar
  7. 7.
    Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol. 2008;17:1–11. doi: 10.1159/000109583.PubMedGoogle Scholar
  8. 8.
    Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol. 2000;18:723–727. doi: 10.1038/77283.PubMedCrossRefGoogle Scholar
  9. 9.
    Biederer C, Ries S, Brandts CH, McCormick F. Replication-selective viruses for cancer therapy. J Mol Med. 2002;80:163–175. doi: 10.1007/s00109-001-0295-1.PubMedCrossRefGoogle Scholar
  10. 10.
    Hioki M, Kagawa S, Fujiwara T, et al. Combination of oncolytic adenovirotherapy and Bax gene therapy in human cancer xenografted models. Potential merits and hurdles for combination therapy. Int J Cancer. 2008;122:2628–2633. doi: 10.1002/ijc.23438.PubMedCrossRefGoogle Scholar
  11. 11.
    Nettelbeck DM. Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs. 2003;14:577–584. doi: 10.1097/00001813-200309000-00001.PubMedCrossRefGoogle Scholar
  12. 12.
    Hallden G, Thorne SH, Yang J, Kirn DH. Replication-selective oncolytic adenoviruses. Methods Mol Med. 2004;90:71–90.PubMedGoogle Scholar
  13. 13.
    Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 2007;7:141–148. doi: 10.2174/156800907780058817.PubMedCrossRefGoogle Scholar
  14. 14.
    Makower D, Rozenblit A, Kaufman H, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003;9:693–702.PubMedGoogle Scholar
  15. 15.
    Ring CJ. Cytolytic viruses as potential anti-cancer agents. J Gen Virol. 2002;83:491–502.PubMedGoogle Scholar
  16. 16.
    Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer. 2002;86:5–11. doi: 10.1038/sj.bjc.6600006.PubMedCrossRefGoogle Scholar
  17. 17.
    Morley S, MacDonald G, Kirn D, Kaye S, Brown R, Soutar D. The dl1520 virus is found preferentially in tumor tissue after direct intratumoral injection in oral carcinoma. Clin Cancer Res. 2004;10:4357–4362. doi: 10.1158/1078-0432.CCR-03-0443.PubMedCrossRefGoogle Scholar
  18. 18.
    Hann B, Balmain A. Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 mutants. J Virol. 2003;77:11588–11595. doi: 10.1128/JVI.77.21.11588-11595.2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998;72:9470–9478.PubMedGoogle Scholar
  20. 20.
    Saukkonen K, Hemminki A. Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther. 2004;4:683–696. doi: 10.1517/14712598.4.5.683.PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Chen Y, Dilley J, et al. Carcinoembryonic antigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy. Mol Cancer Ther. 2003;2:1003–1009.PubMedGoogle Scholar
  22. 22.
    Kim J, Lee B, Kim JS, et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett. 2002;180:23–32. doi: 10.1016/S0304-3835(02)00017-4.PubMedCrossRefGoogle Scholar
  23. 23.
    Li Y, Yu DC, Chen Y, et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 2001;61:6428–6436.PubMedGoogle Scholar
  24. 24.
    Gemin A, Sweet S, Preston TJ, Singh G. Regulation of the cell cycle in response to inhibition of mitochondrial generated energy. Biochem Biophys Res Commun. 2005;332:1122–1132. doi: 10.1016/j.bbrc.2005.05.061.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson L, Shen A, Boyle L, et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell. 2002;1:325–337. doi: 10.1016/S1535-6108(02)00060-0.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 2002;62:3438–3447.PubMedGoogle Scholar
  27. 27.
    Su CQ, Sham J, Xue HB, et al. Potent antitumoral efficacy of a novel replicative adenovirus CNHK300 targeting telomerase-positive cancer cells. J Cancer Res Clin Oncol. 2004;130:591–603. doi: 10.1007/s00432-004-0577-4.PubMedCrossRefGoogle Scholar
  28. 28.
    Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci USA. 1994;91:8802–8806. doi: 10.1073/pnas.91.19.8802.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003;13:481–489. doi: 10.1038/sj.cr.7290191.PubMedCrossRefGoogle Scholar
  30. 30.
    Canepa ET, Scassa ME, Ceruti JM, et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life. 2007;59:419–426. doi: 10.1080/15216540701488358.PubMedCrossRefGoogle Scholar
  31. 31.
    Coqueret O. Linking cyclins to transcriptional control. Gene. 2002;299:35–55. doi: 10.1016/S0378-1119(02)01055-7.PubMedCrossRefGoogle Scholar
  32. 32.
    Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 2002;1602:73–87.PubMedGoogle Scholar
  33. 33.
    Chen F, Li Y, Lu Z, Gao J, Chen J. Adenovirus-mediated Ink4a/ARF gene transfer significantly suppressed the growth of pancreatic carcinoma cells. Cancer Biol Ther. 2005;4:1348–1354.PubMedCrossRefGoogle Scholar
  34. 34.
    Qian Q, Sham J, Che X, et al. Gene-viral vectors: a promising way to target tumor cells and express anticancer genes simultaneously. Chin Med J (Engl). 2002;115:1213–1217.Google Scholar
  35. 35.
    Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF. New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther. 2002;13:1737–1750. doi: 10.1089/104303402760293574.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Ma
    • 1
  • X. He
    • 2
  • W. Wang
    • 1
  • Y. Huang
    • 3
  • L. Chen
    • 3
  • W. Cong
    • 3
  • J. Gu
    • 4
  • H. Hu
    • 1
  • J. Shi
    • 1
  • L. Li
    • 3
  • C. Su
    • 3
  1. 1.Department of Internal Medicine117 Hospital of Chinese People’s Liberation ArmyHangzhouPeople’s Republic of China
  2. 2.Department of GastroenterologyJinling HospitalNanjingPeople’s Republic of China
  3. 3.Laboratory of Gene & Viral Therapy, Eastern Hepatobiliary Surgical HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  4. 4.Shanghai SLAC Laboratory Animal Co. Ltd.Chinese Academy of Sciences - Shanghai BranchShanghaiChina

Personalised recommendations