Digestive Diseases and Sciences

, Volume 54, Issue 7, pp 1418–1424 | Cite as

Anticancer Effect of Celecoxib via COX-2 Dependent and Independent Mechanisms in Human Gastric Cancers Cells

  • Hua Liu
  • Peixin Huang
  • Xuanfu Xu
  • Jun Liu
  • Chuanyong Guo
Original Article


Cyclooxygenase-2 (COX-2) inhibitors cause growth inhibition of human gastric carcinoma cells, but it remains unclear whether this is both COX-2 dependent and independent. The related mechanisms remain to be determined. Both low COX-2 expressing gastric carcinoma and high COX-2 expressing gastric carcinoma cells were used to study the effect and mechanisms of celecoxib on gastric carcinoma cell growth. Celecoxib resulted in comparable growth inhibition in AGS cells with stable transfections of small interfering RNA (siRNA) against COX-2 (SAC) and negative control vector (NC) cells. Simultaneously, celecoxib resulted in significant reduction of Bcl-2 and significant increase of p21WAF1 and p27KIP1 in SAC and NC cells. The present study shows that celecoxib causes growth inhibition of gastric carcinoma cells by decreasing Bcl-2 of cyclooxygenase-2-dependent pathway, and by increasing p21WAF1 and p27KIP1 of cyclooxygenase-2-independent pathway. These data extend our knowledge on the effect and mechanisms of celecoxib-induced inhibition of gastric carcinoma cell growth.


Gastric carcinoma Cyclooxygenase-2 RNA interference Cyclooxygenase-2-dependent pathway Cyclooxygenase-2-independent pathway 



This work was supported by the Youth Research Foundation of Shanghai Municipal Health Bureau.


  1. 1.
    Cuccurullo C, Fazia ML, Mezzetti A, Cipollone F. COX-2 expression in atherosclerosis: the good, the bad or the ugly? Curr Med Chem. 2007;14:1595–1605. doi: 10.2174/092986707780830998.PubMedCrossRefGoogle Scholar
  2. 2.
    Brock TG, Peters-Golden M. Activation and regulation of cellular eicosanoid biosynthesis. ScientificWorld Journal. 2007;7:1273–1284. doi: 10.1100/tsw.2007.180.PubMedCrossRefGoogle Scholar
  3. 3.
    Amir M, Agarwal HK. Role of COX-2 selective inhibitors for prevention and treatment of cancer. Pharmazie. 2005;60:563–570.PubMedGoogle Scholar
  4. 4.
    Bertagnolli MM. Cox-2 and cancer chemoprevention: picking up the pieces. Recent results in cancer research. Fortschr Krebsforschung. 2007;174:73–78.Google Scholar
  5. 5.
    Sarkar FH, Adsule S, Li Y, Padhye S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem. 2007;7:599–608. doi: 10.2174/138955707780859431.PubMedCrossRefGoogle Scholar
  6. 6.
    Nardone G, Rocco A. Chemoprevention of gastric cancer: role of COX-2 inhibitors and other agents. Dig Dis. 2004;22:320–326. doi: 10.1159/000083593.PubMedCrossRefGoogle Scholar
  7. 7.
    Harris RE. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem. 2007;42:93–126. doi: 10.1007/1-4020-5688-5_4.PubMedCrossRefGoogle Scholar
  8. 8.
    Marnett LJ, DuBois RN. COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol. 2002;42:55–80. doi: 10.1146/annurev.pharmtox.42.082301.164620.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13:127–137. doi: 10.1097/00001813-200202000-00003.PubMedCrossRefGoogle Scholar
  10. 10.
    Farooqui M, Li Y, Rogers T, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia. Br J Cancer. 2007;97:1523–1531. doi: 10.1038/sj.bjc.6604057.PubMedCrossRefGoogle Scholar
  11. 11.
    Shin VY, Wu WK, Chu KM, et al. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res. 2005;3:607–615. doi: 10.1158/1541-7786.MCR-05-0106.PubMedCrossRefGoogle Scholar
  12. 12.
    Da MX, Wu XT, Wang J, et al. Expression of cyclooxygenase-2 and vascular endothelial growth factor-C correlates with lymphangiogenesis and lymphatic invasion in human gastric cancer. Arch Med Res. 2008;39:92–99. doi: 10.1016/j.arcmed.2007.06.021.PubMedCrossRefGoogle Scholar
  13. 13.
    Maier TJ, Schilling K, Schmidt R, Geisslinger G, Grosch S. Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochem Pharmacol. 2004;67:1469–1478. doi: 10.1016/j.bcp.2003.12.014.PubMedCrossRefGoogle Scholar
  14. 14.
    Park JH, Kang KH, Kim SH, et al. Expression of Cyclooxygenase-2 and Bcl-2 in human gastric adenomas. Korean J Intern Med. 2005;20:198–204.PubMedGoogle Scholar
  15. 15.
    Liu XP, Tsushimi K, Tsushimi M, et al. Expression of p21(WAF1/CIP1) and p53 proteins in gastric carcinoma: its relationships with cell proliferation activity and prognosis. Cancer Lett. 2001;170:183–189. doi: 10.1016/S0304-3835(01)00589-4.PubMedCrossRefGoogle Scholar
  16. 16.
    Belletti B, Nicoloso MS, Schiappacassi M, et al. p27 (kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem. 2005;12:1589–1605. doi: 10.2174/0929867054367149.PubMedCrossRefGoogle Scholar
  17. 17.
    Wallace JM. Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther. 2002;1:7–37. (discussion 37).PubMedGoogle Scholar
  18. 18.
    Kakizoe T. Chemoprevention of cancer–focusing on clinical trials. Jpn J Clin Oncol. 2003;33:421–442. doi: 10.1093/jjco/hyg090.PubMedCrossRefGoogle Scholar
  19. 19.
    Shin SS, Byun Y, Lim KM, et al. In vitro structure–activity relationship and in vivo studies for a novel class of cyclooxygenase-2 inhibitors: 5-aryl-2, 2-dialkyl-4-phenyl-3(2H)furanone derivatives. J Med Chem. 2004;47:792–804. doi: 10.1021/jm020545z.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang MT, Chen ZX, Wei B, et al. Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide. Acta Pharmacol Sin. 2007;28:1842–1850. doi: 10.1111/j.1745-7254.2007.00652.x.PubMedCrossRefGoogle Scholar
  21. 21.
    Cho SJ, Kim N, Kim JS, Jung HC, Song IS. The anti-cancer effect of COX-2 inhibitors on gastric cancer cells. Dig Dis Sci. 2007;52:1713–1721. doi: 10.1007/s10620-007-9787-3.PubMedCrossRefGoogle Scholar
  22. 22.
    Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J. 2001;15:2742–2744.PubMedGoogle Scholar
  23. 23.
    Makitie AA, Chau M, Lim S, et al. Selective inhibition of cyclooxygenase 2 induces p27kip1 and skp2 in oral squamous cell carcinoma. J Otolaryngol. 2003;32:226–229. doi: 10.2310/7070.2003.41701.PubMedCrossRefGoogle Scholar
  24. 24.
    Narayanan BA, Condon MS, Bosland MC, Narayanan NK, Reddy BS. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism(s). Clin Cancer Res. 2003;9:3503–3513.PubMedGoogle Scholar
  25. 25.
    Liao WM, Zhang CL, Li FB, Zeng BF, Zeng YX. p21WAF1/CIP1 gene DNA sequencing and its expression in human osteosarcoma. Chin Med J. 2004;117:936–940.PubMedGoogle Scholar
  26. 26.
    Matsui TA, Sowa Y, Murata H, et al. The plant alkaloid cryptolepine induces p21WAF1/CIP1 and cell cycle arrest in a human osteosarcoma cell line. Int J Oncol. 2007;31:915–922.PubMedGoogle Scholar
  27. 27.
    Hui CM, Cheung PY, Ling MT, et al. Id-1 promotes proliferation of p53-deficient esophageal cancer cells. Int J Cancer. 2006;119:508–514. doi: 10.1002/ijc.21874.PubMedCrossRefGoogle Scholar
  28. 28.
    Inadomi T, Tan M, Suzuki H, Shigematsu C. Immunohistochemical evaluation of the probability of skin metastasis in gastric cancer. Eur J Dermatol. 1999;9:214–217.PubMedGoogle Scholar
  29. 29.
    Xi YG, Ding KY, Su XL, et al. p53 polymorphism and p21WAF1/CIP1 haplotype in the intestinal gastric cancer and the precancerous lesions. Carcinogenesis. 2004;25:2201–2206. doi: 10.1093/carcin/bgh229.PubMedCrossRefGoogle Scholar
  30. 30.
    Mizokami K, Kakeji Y, Oda S, Maehara Y. Relationship of hypoxia-inducible factor 1alpha and p21WAF1/CIP1 expression to cell apoptosis and clinical outcome in patients with gastric cancer. World J Surg Oncol. 2006;4:94. doi: 10.1186/1477-7819-4-94.PubMedCrossRefGoogle Scholar
  31. 31.
    Bouchard C, Thieke K, Maier A, et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 1999;18:5321–5333. doi: 10.1093/emboj/18.19.5321.PubMedCrossRefGoogle Scholar
  32. 32.
    Narayanan BA. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets. Curr Cancer Drug Targets. 2006;6:711–727. doi: 10.2174/156800906779010218.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang H, Zhang Y, Zhao R, et al. Negative cell cycle regulator 14–3-3sigma stabilizes p27 Kip1 by inhibiting the activity of PKB/Akt. Oncogene. 2006;25:4585–4594. doi: 10.1038/sj.onc.1209481.PubMedCrossRefGoogle Scholar
  34. 34.
    Anagnostopoulos GK, Stefanou D, Arkoumani E, et al. Bax and Bcl-2 protein expression in gastric precancerous lesions: immunohistochemical study. J Gastroenterol Hepatol. 2005;20:1674–1678. doi: 10.1111/j.1440-1746.2005.04057.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Triantafyllou K, Kitsanta P, Karamanolis DG, Kittas C, Ladas SD. Epithelial cell turnover, p53 and bcl-2 protein expression during oncogenesis of early and advanced gastric cancer in a Western population. Dig Liver Dis. 2008;40:39–45. doi: 10.1016/j.dld.2007.09.010.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hua Liu
    • 1
  • Peixin Huang
    • 1
  • Xuanfu Xu
    • 1
  • Jun Liu
    • 1
  • Chuanyong Guo
    • 1
  1. 1.Department of GastroenterologyThe Tenth Hospital Affiliated to Tongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations