Advertisement

Digestive Diseases and Sciences

, Volume 54, Issue 7, pp 1513–1519 | Cite as

Regulatory T-Cell Function Is Impaired in Celiac Disease

  • Marilena Granzotto
  • Sara dal Bo
  • Sara Quaglia
  • Alberto Tommasini
  • Elisa Piscianz
  • Erica Valencic
  • Fortunato Ferrara
  • Stefano Martelossi
  • Alessandro Ventura
  • Tarcisio Not
Original Article

Abstract

Celiac disease (CD) is characterized by intolerance to gluten and high risk of developing autoimmune phenomena. Possible defects in immune tolerance could have a role in the pathogenesis of the disease. As regulatory T-cells (Tregs) are the main population involved in maintaining peripheral tolerance, we investigated the number of these cells in celiac patients as compared with healthy donors. Moreover, we analyzed the suppressive function of CD4+CD25+ T-cells from celiac disease patients and controls on autologous responder T-cells (CD4+CD25−). The percentage of CD4+CD25+FOXP3+ cells was not different in celiacs and in healthy controls, and among positive cells the level of expression of the two regulatory markers was comparable. However, the suppressor activity of Tregs was significantly impaired in CD patients. These results suggest that a defect in Tregs function could play a role in the pathogenesis of CD and in CD-associated autoimmunity.

Keywords

Regulatory T-cells Celiac disease Autoimmunity 

References

  1. 1.
    Schuppan D. Current concepts of celiac disease pathogenesis. Gastroenterology. 2000;119:234–242. doi: 10.1053/gast.2000.8521.PubMedCrossRefGoogle Scholar
  2. 2.
    Auricchio S, Troncone R, Maurano F. Coeliac disease in the year 2000. Ital J Gastroenterol Hepatol. 1999;31:773–780.PubMedGoogle Scholar
  3. 3.
    Green PH, Cellier C. Celiac disease. N Engl J Med. 2007;357:1731–1743. doi: 10.1056/NEJMra071600.PubMedCrossRefGoogle Scholar
  4. 4.
    Green FH, Carty JE. Letter: coeliac disease and autoimmunity. Lancet. 1976;1:964. doi: 10.1016/S0140-6736(76)92742-2.PubMedCrossRefGoogle Scholar
  5. 5.
    Collin P, Maki M. Associated disorders in coeliac disease: clinical aspects. Scand J Gastroenterol. 1994;29:769–775. doi: 10.3109/00365529409092508.PubMedCrossRefGoogle Scholar
  6. 6.
    Ventura A, Magazzu G, Greco L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. Sigep study group for autoimmune disorders in celiac disease. Gastroenterology. 1999;117:297–303. doi: 10.1053/gast.1999.0029900297.PubMedCrossRefGoogle Scholar
  7. 7.
    Not T, Tommasini A, Tonini G, et al. Undiagnosed coeliac disease and risk of autoimmune disorders in subjects with type i diabetes mellitus. Diabetologia. 2001;44:151–155. doi: 10.1007/s001250051593.PubMedCrossRefGoogle Scholar
  8. 8.
    Barker JM. Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab. 2006;91:1210–1217. doi: 10.1210/jc.2005-1679.PubMedCrossRefGoogle Scholar
  9. 9.
    Aaltonen J, Björses P, Perheentupa J, et al. An autoimmune disease, apeced, caused by mutations in a novel gene featuring two phd-type zinc-finger domains. Nat Genet. 1997;17:399–403. doi: 10.1038/ng1297-399.CrossRefGoogle Scholar
  10. 10.
    Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–1401. doi: 10.1126/science.1075958.PubMedCrossRefGoogle Scholar
  11. 11.
    Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome (ipex) is caused by mutations of foxp3. Nat Genet. 2001;27:20–21. doi: 10.1038/83713.PubMedCrossRefGoogle Scholar
  12. 12.
    Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20. doi: 10.1038/83707.PubMedCrossRefGoogle Scholar
  13. 13.
    Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM. Defective suppressor function of human cd4+cd25+ regulatory t cells in autoimmune polyglandular syndrome type ii. J Exp Med. 2004;199:1285–1291. doi: 10.1084/jem.20032158.PubMedCrossRefGoogle Scholar
  14. 14.
    Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human cd4(+)cd25(+high) regulatory t cell function. J Immunol. 2002;169:6210–6217.PubMedGoogle Scholar
  15. 15.
    Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in cd4(+)cd25(+) t-cells from patients with type 1 diabetes. Diabetes. 2005;54:92–99. doi: 10.2337/diabetes.54.1.92.PubMedCrossRefGoogle Scholar
  16. 16.
    Brusko T, Atkinson M. Treg in type 1 diabetes. Cell Biochem Biophys. 2007;48:165–175. doi: 10.1007/s12013-007-0018-5.PubMedCrossRefGoogle Scholar
  17. 17.
    Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL, et al. Compromised cd4(+) cd25(high) regulatory t-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of foxp3-positive cells and reduced foxp3 expression at the single-cell level. Immunology. 2008;123(1):79–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Gianfrani C, Levings MK, Sartirana C, et al. Gliadin-specific type 1 regulatory t cells from the intestinal mucosa of treated celiac patients inhibit pathogenic t cells. J Immunol. 2006;177:4178–4186.PubMedGoogle Scholar
  19. 19.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164.PubMedGoogle Scholar
  20. 20.
    Marie JC, Letterio JJ, Gavin M, Rudensky AY. Tgf-beta1 maintains suppressor function and foxp3 expression in cd4+cd25+ regulatory t cells. J Exp Med. 2005;201:1061–1067. doi: 10.1084/jem.20042276.PubMedCrossRefGoogle Scholar
  21. 21.
    Ramsdell F. Foxp3 and natural regulatory t cells: key to a cell lineage? Immunity. 2003;19:165–168. doi: 10.1016/S1074-7613(03)00207-3.PubMedCrossRefGoogle Scholar
  22. 22.
    Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O. Infiltration of forkhead box p3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes. Clin Exp Immunol. 2008;152:498–507.PubMedCrossRefGoogle Scholar
  23. 23.
    Wan YY, Flavell RA. Identifying foxp3-expressing suppressor t cells with a bicistronic reporter. Proc Natl Acad Sci USA. 2005;102:5126–5131. doi: 10.1073/pnas.0501701102.PubMedCrossRefGoogle Scholar
  24. 24.
    Allan SE, Crome SQ, Crellin NK, et al. Activation-induced foxp3 in human t effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007;19:345–354. doi: 10.1093/intimm/dxm014.PubMedCrossRefGoogle Scholar
  25. 25.
    van Heel DA, Hunt K, Greco L, Wijmenga C. Genetics in coeliac disease. Best Pract Res Clin Gastroenterol. 2005;19:323–339. doi: 10.1016/j.bpg.2005.01.001.PubMedCrossRefGoogle Scholar
  26. 26.
    Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Limburg PC, Kallenberg CG. Functional defect of circulating regulatory cd4+ t cells in patients with wegener’s granulomatosis in remission. Arthritis Rheum. 2007;56:2080–2091. doi: 10.1002/art.22692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marilena Granzotto
    • 1
  • Sara dal Bo
    • 2
  • Sara Quaglia
    • 2
  • Alberto Tommasini
    • 1
    • 2
  • Elisa Piscianz
    • 1
  • Erica Valencic
    • 2
  • Fortunato Ferrara
    • 2
  • Stefano Martelossi
    • 2
  • Alessandro Ventura
    • 2
    • 3
  • Tarcisio Not
    • 2
    • 3
  1. 1.Laboratory of ImmunologyIRCCS Burlo GarofoloTriesteItaly
  2. 2.Department of Reproductive and Developmental SciencesUniversity of TriesteTriesteItaly
  3. 3.Department of PediatricsIRCCS Burlo GarofoloTriesteItaly

Personalised recommendations