Digestive Diseases and Sciences

, Volume 54, Issue 4, pp 802–810 | Cite as

Ellagic Acid Inhibits Pancreatic Fibrosis in Male Wistar Bonn/Kobori Rats

  • Noriaki Suzuki
  • Atsushi Masamune
  • Kazuhiro Kikuta
  • Takashi Watanabe
  • Kennichi Satoh
  • Tooru Shimosegawa
Original Article


The key pathological features of chronic pancreatitis are chronic inflammation, acinar atrophy, and pancreatic fibrosis. We have previously shown that ellagic acid, a plant-derived polyphenol found in fruits and nuts, inhibited activation of pancreatic stellate cells, a major profibrogenic cell type in the pancreas, in vitro. Here we examined whether ellagic acid inhibited the development of pancreatic fibrosis in vivo. Ellagic acid was administered orally in the diet to ten-week-old male Wistar Bonn/Kobori rats, an experimental model of spontaneous chronic pancreatitis, for ten weeks. Ellagic acid (100 mg/kg body weight/day) attenuated pancreatic inflammation and fibrosis. The protective effects were confirmed by an increase in pancreatic weight and decreases in myeloperoxidase activity (an index of neutrophil infiltration), collagen content, transforming growth factor-β1 expression, and the number of α-smooth muscle actin-positive cells (activated pancreatic stellate cells) and ED-1-positive cells (macrophages/monocytes). Ellagic acid inhibited the production of reactive oxygen species in pancreatic stellate cells in response to transforming growth factor-β1 or platelet-derived growth factor. Our results suggest that ellagic acid might be a candidate for treatment of chronic pancreatitis.


Pancreatic fibrosis Ellagic acid Polyphenol Pancreatic stellate cells Pancreatitis Antioxidant 



Chronic pancreatitis


2′,7′-Dichlorofluorescein diacetate




Polymerase chain reaction


Platelet-derived growth factor


Pancreatic stellate cell


Reactive oxygen species


Smooth muscle actin


Transforming growth factor


Wistar Bonn/Kobori



This work was supported in part by Grant-in-Aid from the Japan Society for the Promotion of Science (to A.M. and K.K.), by the Pancreas Research Foundation of Japan (to A.M. and K.K.), by the Kanae Foundation for Life and Socio-Medical Science (to A.M.), and by the Uehara Memorial Foundation (to A.M.).


  1. 1.
    Steer ML, Waxman I, Freedman S (1995) Chronic pancreatitis. N Engl J Med 332:1482–1490. doi: 10.1056/NEJM199506013322206 PubMedCrossRefGoogle Scholar
  2. 2.
    Ammann RW (2001) The natural history of alcoholic chronic pancreatitis. Intern Med 40:368–375. doi: 10.2169/internalmedicine.40.368 PubMedCrossRefGoogle Scholar
  3. 3.
    Talukdar R, Saikia N, Singal DK, Tandon R (2006) Chronic pancreatitis: evolving paradigms. Pancreatology 6:440–9. doi: 10.1159/000094561 PubMedCrossRefGoogle Scholar
  4. 4.
    Talukdar R, Tandon R (2008) Pancreatic stellate cells: new target in the treatment of chronic pancreatitis. J Gastroenterol Hepatol 23:34–41PubMedCrossRefGoogle Scholar
  5. 5.
    Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA et al (1998) Periacinar stellate-shaped cells in rat pancreas: identification, isolation and culture. Gut 43:128–133PubMedCrossRefGoogle Scholar
  6. 6.
    Bachem MG, Schneider E, Gross H, Weidenbach H, Schmidt RM, Menke A et al (1998) Identification, culture, and characterization of pancreas stellate cells in rats and humans. Gastroenterology 115:421–432. doi: 10.1016/S0016-5085(98)70209-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T (2002) Ligands of peroxisome proliferator-activated receptor-γ block activation of pancreatic stellate cells. J Biol Chem. 277:141–147. doi: 10.1074/jbc.M107582200 PubMedCrossRefGoogle Scholar
  8. 8.
    Pinzani M (2006) Pancreatic stellate cells: new kids become mature. Gut 55:12–14. doi: 10.1136/gut.2005.074427 PubMedCrossRefGoogle Scholar
  9. 9.
    Omary MB, Lugea A, Lowe AW, Pandol SJ (2007) The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 117:50–59. doi: 10.1172/JCI30082 PubMedCrossRefGoogle Scholar
  10. 10.
    Shimizu K, Shiratori K, Hayashi N, Kobayashi M, Fujiwara T, Horikoshi H (2002) Thiazolidinedione derivatives as novel therapeutic agents to prevent the development of chronic pancreatitis. Pancreas 24:184–190. doi: 10.1097/00006676-200203000-00010 PubMedCrossRefGoogle Scholar
  11. 11.
    Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S et al (2003) Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 124:1010–1019. doi: 10.1053/gast.2003.50147 PubMedCrossRefGoogle Scholar
  12. 12.
    Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T (2008) NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 294:G99–G108. doi: 10.1152/ajpgi.00272.2007 PubMedCrossRefGoogle Scholar
  13. 13.
    Meng M, Li YQ, Yan MX, Kou Y, Ren HB (2007) Effects of epigallocatechin gallate on diethyldithiocarbamate-induced pancreatic fibrosis in rats. Biol Pharm Bull 30:1091–1096. doi: 10.1248/bpb.30.1091 PubMedCrossRefGoogle Scholar
  14. 14.
    Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2206. doi: 10.1021/jf011275g PubMedCrossRefGoogle Scholar
  15. 15.
    Iino T, Tashima K, Umeda M, Ogawa Y, Takeeda M, Takata K et al (2002) Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sci 70:1139–1150. doi: 10.1016/S0024-3205(01)01493-X PubMedCrossRefGoogle Scholar
  16. 16.
    Thresiamma KC, Kuttan R (1996) Inhibition of liver fibrosis by ellagic acid. Indian J Physiol Pharmacol 40:363–366PubMedGoogle Scholar
  17. 17.
    Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW (1999) p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett 136:215–221. doi: 10.1016/S0304-3835(98)00323-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Khanduja KL, Gandhi RK, Pathania V, Syal N (1999) Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol 37:313–318. doi: 10.1016/S0278-6915(99)00021-6 PubMedCrossRefGoogle Scholar
  19. 19.
    Masamune A, Satoh M, Kikuta K, Suzuki N, Satoh K, Shimosegawa T (2005) Ellagic acid blocks activation of pancreatic stellate cells. Biochem Pharmacol 70:869–878. doi: 10.1016/j.bcp. 2005.06.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K (1990) WBN/Kob rats. A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol 6:231–247PubMedGoogle Scholar
  21. 21.
    Tasaki M, Umemura T, Maeda M, Ishii Y, Okamura T, Inoue T et al (2008) Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food Chem Toxicol 46:1119–1124PubMedGoogle Scholar
  22. 22.
    Akagi K, Hirose M, Hoshiya T, Mizoguchi Y, Ito N, Shirai T (1995) Modulating effects of ellagic acid, vanillin and quercetin in a rat medium term multi-organ carcinogenesis model. Cancer Lett 94:113–121. doi: 10.1016/0304-3835(95)03833-I PubMedCrossRefGoogle Scholar
  23. 23.
    Sakthivel M, Elanchezhian R, Ramesh E, Isai M, Jesudasan CN, Thomas PA, Geraldine P (2008) Prevention of selenite-induced cataractogenesis in Wistar rats by the polyphenol, ellagic acid. Exp Eye Res 86:251–259PubMedCrossRefGoogle Scholar
  24. 24.
    Ogawa Y, Kanatsu K, Iino T, Kato S, Jeong YI, Shibata N et al (2002) Protection against dextran sulfate sodium-induced colitis by microspheres of ellagic acid in rats. Life Sci 71:827–839. doi: 10.1016/S0024-3205(02)01737-X PubMedCrossRefGoogle Scholar
  25. 25.
    Dolber PC, Spach MS (1993) Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J Histochem Cytochem 41:465–469PubMedGoogle Scholar
  26. 26.
    Yamanaka K, Saluja AK, Brown GE, Yamaguch Y, Hofbauer B, Steer ML (1997) Protective effects of prostaglandin E1 on acute lung injury of caerulein-induced acute pancreatitis in rats. Am J Physiol 272:G23–G30PubMedGoogle Scholar
  27. 27.
    Masamune A, Kikuta K, Satoh M, Kume K, Shimosegawa T (2003) Differential roles of signaling pathways for proliferation and migration of rat pancreatic stellate cells. Tohoku J Exp Med. 199:69–84. doi: 10.1620/tjem.199.69 PubMedCrossRefGoogle Scholar
  28. 28.
    Bimmler D, Schiesser M, Perren A, Scheele G, Angst E, Meili S et al (2004) Coordinate regulation of PSP/reg and PAP isoforms as a family of secretory stress proteins in an animal model of chronic pancreatitis. J Surg Res 118:122–135. doi: 10.1016/S0022-4804(03)00342-1 PubMedCrossRefGoogle Scholar
  29. 29.
    Van Laethem JL, Deviere J, Resibois A, Deviere J (1996) Transforming growth factor beta promotes development of fibrosis after repeated courses of acute pancreatitis in mice. Gastroenterology 110:576–582. doi: 10.1053/gast.1996.v110.pm8566606 PubMedCrossRefGoogle Scholar
  30. 30.
    Menke A, Yamaguchi H, Gress TM, Adler G (1997) Extracellular matrix is reduced by inhibition of transforming growth factor beta1 in pancreatitis in the rat. Gastroenterology 113:295–303. doi: 10.1016/S0016-5085(97)70107-0 PubMedCrossRefGoogle Scholar
  31. 31.
    Nagashio Y, Ueno H, Imamura M, Asaumi H, Watanabe S, Yamaguchi T et al (2004) Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Invest 84:1610–1618. doi: 10.1038/labinvest.3700191 PubMedCrossRefGoogle Scholar
  32. 32.
    Inoue M, Ino Y, Gibo J, Ito T, Hisano T, Arita Y et al (2002) The role of monocyte chemoattractant protein-1 in experimental chronic pancreatitis model induced by dibutyltin dichloride in rats. Pancreas 25:e64–e70. doi: 10.1097/00006676-200211000-00023 PubMedCrossRefGoogle Scholar
  33. 33.
    Masamune A, Suzuki N, Kikuta K, Satoh K, Shimosegawa T (2006) Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem 97:1080–1093. doi: 10.1002/jcb.20698 PubMedCrossRefGoogle Scholar
  34. 34.
    Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T (2005) Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol 11:3368–3374PubMedGoogle Scholar
  35. 35.
    Asaumi H, Watanabe S, Taguchi M, Tashiro M, Nagashio Y, Nomiyama Y et al (2006) Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells. Eur J Clin Invest 26:113–122. doi: 10.1111/j.1365-2362.2006.01599.x CrossRefGoogle Scholar
  36. 36.
    Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306. doi: 10.1080/1040869059096 PubMedCrossRefGoogle Scholar
  37. 37.
    Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207. doi: 10.1016/j.jconrel.2006.04.015 PubMedCrossRefGoogle Scholar
  38. 38.
    Bala I, Bhardwaj V, Hariharan S, Sitterberg J, Bakowsky U, Kumar MNVR (2005) Design of biodegradable nanoparticles: a novel approach to encapsulating poorly soluble phytochemical ellagic acid. Nanotechnology 16:2819–2822. doi: 10.1088/0957-4484/16/12/014 CrossRefGoogle Scholar
  39. 39.
    Kasai K, Yoshimura M, Koga T, Arii M, Kawasaki S (2006) Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin. J Nutr Sci Vitaminol (Tokyo) 52:383–388. doi: 10.3177/jnsv.52.383 CrossRefGoogle Scholar
  40. 40.
    Falsaperla M, Morgia G, Tartarone A, Ardito R, Romano G (2005) Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine phosphate. Eur Urol 47:449–455. doi: 10.1016/j.eururo.2004.12.001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Noriaki Suzuki
    • 1
  • Atsushi Masamune
    • 1
  • Kazuhiro Kikuta
    • 1
  • Takashi Watanabe
    • 1
  • Kennichi Satoh
    • 1
  • Tooru Shimosegawa
    • 1
  1. 1.Division of GastroenterologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations