Advertisement

Increased 5-Hydroxytryptamine Mediates Post-Inflammatory Visceral Hypersensitivity via the 5-Hydroxytryptamine 3 Receptor in Rats

  • Yun-Dong Choi
  • Tae-Sik Sung
  • Hyun-Ju Kim
  • Jun-Ho La
  • Tae-Wan Kim
  • Il-Suk Yang
Original Paper

Abstract

Visceral hypersensitivity often develops after intestinal inflammation, but the pathogenic mechanism has not been clearly elucidated. We investigated whether this post-inflammatory visceral hypersensitivity is mediated by 5-hydroxytryptamine through activation of the 5-hydroxytryptamine 3 receptor. In male Sprague–Dawley rats recovered from acetic acid-induced colitis, we monitored visceral nociceptive response by scoring the abdominal withdrawal reflex and simultaneously measuring the changes in arterial pulse rate. Seven days after induction of colitis, 52% of the rats showed an increased abdominal withdrawal reflex score and arterial pulse rate changes to colorectal distension, indicating that they had post-inflammatory visceral hypersensitivity. The 5-hydroxytryptamine 3 receptor antagonists, alosetron (20 mg/kg, p.o.) and granisetron (10 μg/kg, s.c.), inhibited post-inflammatory visceral hypersensitivity. Administration of a 5-hydroxytryptamine precursor, 5-hydroxytryptophan; 10 mg/kg, s.c.), induced visceral hypersensitivity in naïve rats, which was antagonized by granisetron. Increase in 5-hydroxytryptamine immunoreactive cells in colonic mucosal layer was found both in the rats with post-inflammatory visceral hypersensitivity and in the 5-hydroxytryptophan-treated rats. These results suggest that increased 5-hydroxytryptamine in colonic mucosa mediates post-inflammatory visceral hypersensitivity through activation of the 5-hydroxytryptamine 3 receptor.

Keywords

5-Hydroxytryptamine Colorectal distension Post-Inflammatory visceral hypersensitivity Intestinal inflammation 

References

  1. 1.
    Quigley EM (2003) Current concepts of the irritable bowel syndrome. Scand J Gastroenterol 237:1–8. doi: 10.1080/00855910310001403 Google Scholar
  2. 2.
    Adam B, Liebregts T, Gschossmann JM, Krippner C, Scholl F, Ruwe M, Holtmann G (2006) Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123:179–186. Medline. doi: 10.1016/j.pain.2006.02.029 Google Scholar
  3. 3.
    Barreau F, Ferrier L, Fioramonti J, Bueno L (2007) New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 62:240–245PubMedCrossRefGoogle Scholar
  4. 4.
    Parry S, Forgacs I (2005) Intestinal infection and irritable bowel syndrome. Eur J Gastroenterol Hepatol 17:5–9. Medline. doi: 10.1097/00042737-200501000-00002 Google Scholar
  5. 5.
    Gschossmann JM, Liebregts T, Adam B, Buenger L, Ruwe M, Gerken G, Holtmann G (2004) Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci 49:96–101. Medline. doi: 10.1023/B:DDAS.0000011609.68882.3a Google Scholar
  6. 6.
    Kim DY, Camilleri M (2000) Serotonin: a mediator of the brain-gut connection Am J Gastroenterol 95:2698–2709. MedlinePubMedGoogle Scholar
  7. 7.
    Bertaccini G (1960) Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastro-intestinal tract in the rat. J Physiol 153:239–249. MedlinePubMedGoogle Scholar
  8. 8.
    Galligan JJ (1996) Electrophysiological studies of 5-hydroxytryptamine receptors on enteric neurons. Behav Brain Res 73:199–201. Medline. doi: 10.1016/0166-4328(96)00096-4 Google Scholar
  9. 9.
    Briejer MR, Akkermans LM, Schuurkes JA (1995) Gastrointestinal prokinetic benzamides: the pharmacology underlying stimulation of motility. Pharmacol Rev 47:631–651. MedlinePubMedGoogle Scholar
  10. 10.
    Read NW, Gwee KA (1994) The importance of 5-hydroxytryptamine receptors in the gut. Pharmacol Ther 62:159–173. Medline. doi: 10.1016/0163-7258(94)90009-4 Google Scholar
  11. 11.
    Prins NH, Briejer MR, Van Bergen PJ, Akkermans LM, Schuurkes JA (1999) Evidence for 5-HT7 receptors mediating relaxation of human colonic circular smooth muscle. Br J Pharmacol 128:849–852. Medline. doi: 10.1038/sj.bjp.0702762 Google Scholar
  12. 12.
    Mori T, Kawano K, Shishikura T (2004) 5-HT3-receptor antagonist inhibits visceral pain differently in chemical and mechanical stimuli in rats. J Pharmacol Sci 94:73–76. Medline. doi: 10.1254/jphs.94.73 Google Scholar
  13. 13.
    Banner SE, Sanger GJ (1995) Differences between 5-HT3 receptor antagonists in modulation of visceral hypersensitivity. Br J Pharmacol 114:558–562. MedlinePubMedGoogle Scholar
  14. 14.
    Langlois A, Pascaud X, Junien JL, Dahl SG, Riviere PJ (1996) Response heterogeneity of 5-HT3 receptor antagonists in a rat visceral hypersensitivity model. Eur J Pharmacol 318:141–144. Medline. doi: 10.1016/S0014-2999(96)00857-6 Google Scholar
  15. 15.
    La JH, Kim TW, Sung TS, Kang JW, Kim HJ, Yang IS (2003) Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol 9:2791–2795. MedlinePubMedGoogle Scholar
  16. 16.
    Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285. Medline. doi: 10.1053/gast.2000.19576 Google Scholar
  17. 17.
    La JH, Kim TW, Sung TS, Kim HJ, Kim JY, Yang IS (2004) Role of mucosal mast cells in visceral hypersensitivity in a rat model of irritable bowel syndrome. J Vet Sci 5:319–324. MedlinePubMedGoogle Scholar
  18. 18.
    Yang JP, Yao M, Jiang XH, Wang LN (2006) Establishment of model of visceral pain due to colorectal distension and its behavioral assessment in rats. World J Gastroenterol 12:2781–2784. MedlinePubMedGoogle Scholar
  19. 19.
    Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 450:153–169. Medline. doi: 10.1016/0006-8993(88)91555-7 Google Scholar
  20. 20.
    Kawano K, Mori T, Fu L, Ito T, Niisato T, Yoshida S, Shiokawa S, Sato Y, Murakami H, Shishikura T (2005) Comparison between partial agonist (ME3412) and antagonist (alosetron) of 5-hydroxytryptamine 3 receptor on gastrointestinal function. Neurogastroenterol Motil 17:290–301. Medline. doi: 10.1111/j.1365-2982.2004.00622.x Google Scholar
  21. 21.
    Linden DR, Chen JX, Gershon MD, Sharkey KA, Mawe GM (2003) Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 285:G207–G216. MedlinePubMedGoogle Scholar
  22. 22.
    Bradesi S, Lao L, McLean PG, Winchester WJ, Lee K, Hicks GA, Mayer EA (2007) Dual role of 5-HT3 receptors in a rat model of delayed stress-induced visceral hyperalgesia. Pain 130:56–65. Medline. doi: 10.1016/j.pain.2006.10.028 Google Scholar
  23. 23.
    Miranda A, Peles S, McLean PG, Sengupta JN (2006) Effects of the 5-HT3 receptor antagonist, alosetron, in a rat model of somatic and visceral hyperalgesia. Pain 126:54–63. Medline. doi: 10.1016/j.pain.2006.06.014 Google Scholar
  24. 24.
    Botella A, Fioramonti J, Eeckhout C, Bueno L (1998) Intracolonic glycerol induces abdominal contractions in rats: role of 5-HT3 receptors. Fundam Clin Pharmacol 12:619–623. MedlinePubMedGoogle Scholar
  25. 25.
    Danzebrink RM, Gebhart GF (1991) Evidence that spinal 5-HT1, 5-HT2 and 5-HT3 receptor subtypes modulate responses to noxious colorectal distension in the rat. Brain Res 538:64–75. Medline. doi: 10.1016/0006-8993(91)90377-8 Google Scholar
  26. 26.
    Morteau O, Julia V, Eeckhout C, Bueno L (1994) Influence of 5-HT3 receptor antagonists in visceromotor and nociceptive responses to rectal distension before and during experimental colitis in rats. Fundam Clin Pharmacol 8:553–562. MedlinePubMedCrossRefGoogle Scholar
  27. 27.
    Coelho AM, Fioramonti J, Bueno L (1998) Mast cell degranulation induces delayed rectal allodynia in rats: role of histamine and 5-HT. Dig Dis Sci 43:727–737. Medline. doi: 10.1023/A:1018853728251 Google Scholar
  28. 28.
    Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA (2007) Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol 579:203–213. Medline. doi: 10.1113/jphysiol.2006.123158 Google Scholar
  29. 29.
    Dunlop SP, Jenkins D, Neal KR, Spiller RC (2003) Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125:1651–1659PubMedCrossRefGoogle Scholar
  30. 30.
    Wheatcroft J, Wakelin D, Smith A, Mahoney CR, Mawe G, Spiller R (2005) Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol Motil 17:863–870. Medline. doi: 10.1111/j.1365-2982.2005.00719.x Google Scholar
  31. 31.
    Ahlman H, Bhargava HN, Dahlstrom A, Larsson I, Newson B, Pettersson G (1981) On the presence of serotonin in the gut lumen and possible release mechanisms. Acta Physiol Scand 112:263–269. MedlinePubMedCrossRefGoogle Scholar
  32. 32.
    Gershon MD, Ross LL (1966) Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J Physiol 186:477–492. MedlinePubMedGoogle Scholar
  33. 33.
    Gershon MD, Drakontides AB, Ross LL (1965) Serotonin: synthesis and release from the myenteric plexus of the mouse intestine. Science 149:197–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yun-Dong Choi
    • 1
  • Tae-Sik Sung
    • 1
  • Hyun-Ju Kim
    • 1
  • Jun-Ho La
    • 1
  • Tae-Wan Kim
    • 2
  • Il-Suk Yang
    • 1
  1. 1.Department of Physiology, College of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Physiology, College of Veterinary MedicineKyungpuk National UniversityDaeguRepublic of Korea

Personalised recommendations