Digestive Diseases and Sciences

, Volume 53, Issue 6, pp 1593–1600 | Cite as

Effects of Chronic Hypoxia on Electrogenic Transport and Transport-related Oxygen Consumption in Rat Distal Colon

  • Liliana M. Cincunegui
  • Leonor M. I. Ituarte
  • Teresa B. Viera
  • Jorge E. Ibañez
  • Graciela E. Carra
  • Teobaldo A. Saldeña
  • Fernando D. Saravi
Original Paper


The distal colon epithelium of rats submitted to chronic hypoxia shows higher short-circuit current (I sc) which, unlike non-hypoxic rat epithelium, has an amiloride-sensitive component despite low serum aldosterone levels. I sc and oxygen consumption (QO2) were simultaneously measured in mucosae from rats submitted to 0.5 atm for 10 days and from control rats in a modified Ussing chamber. Hypoxia increased I sc but not QO2. The slope of the regression line between I sc and QO2 reduction after ouabain addition was decreased in epithelia from hypoxic rats (P = 0.03). Chloride secretion blockade reduced I sc and QO2 in both groups, while sodium channel blockade did so only in the hypoxic group. Dual blockade in hypoxic rat epithelia caused correlated (P = 0.0025) additive decreases in I sc and QO2. Presented results suggest that chronic hypoxia induces an improved coupling between QO2 and electrogenic ion transport, and electrogenic sodium absorption despite low aldosterone levels.


Aldosterone Chronic hypobaric hypoxia Electrogenic sodium transport Oxygen consumption Rat distal colon Short-circuit current 



This work was supported by grant 06/J-185 to Fernando D. Saraví and a scholarship awarded to Liliana M. Cincunegui, both from the Universidad Nacional de Cuyo.


  1. 1.
    Mandel LJ, Balaban RS (1981) Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol 240:F357–F371PubMedGoogle Scholar
  2. 2.
    Durand J, Durand-Arczynska W, Wankmiller D (1988) Coupling of active sodium transport to oxidative metabolism in the rabbit distal colon. J Physiol London 396:55–64PubMedGoogle Scholar
  3. 3.
    Gullans SR, Herbert SC (1991) Metabolic bases of ion transport. In: Brenner BM, Rector FC Jr (eds) The kidney, 4th ed. Saunders, Philadelphia, pp 76–104Google Scholar
  4. 4.
    Edmonds CJ, Marriott J (1968) Electrical potential and short-circuit current of an in vitro preparation of rat colon mucosa. J Physiol London 194:479–494PubMedGoogle Scholar
  5. 5.
    Lew VL (1970) Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum. J Physiol London 206:509–528PubMedGoogle Scholar
  6. 6.
    Saraví FD, Saldeña TA, Cincunegui LM (1996) Colon epithelial electrical responses to acute hypoxia and reoxygenation. Acta Gastroenterol Latinoam 26:159–165PubMedGoogle Scholar
  7. 7.
    Chinn KS, Hannon JP (1969) Efficiency of food utilization at high altitude. Federat Proc 28:944–947Google Scholar
  8. 8.
    Frisancho D, Frisancho O (1992) Fisiología y patología digestiva en la altura. Rev Gastroenterol Perú 12:155–158PubMedGoogle Scholar
  9. 9.
    Lifshitz F, Wapnir RA, Teichberg S (1986) Alterations in jejunal transport and (Na+–K+)-ATPase in an experimental model of hypoxia in rats. Proc Soc Exp Biol Med 181:87–97PubMedGoogle Scholar
  10. 10.
    LeGrand TS, Aw TY (1998) Chronic hypoxia alters glucose utilization during GSH-dependent detoxication in rat small intestine. Am J Physiol 274:G376–G384PubMedGoogle Scholar
  11. 11.
    O’Riordan DK, Debnam ES, Sharp PA, Simpson RJ, Taylor EM, Srai KS (1997) Mechanisms involved in increased iron uptake across rat duodenal brush-border membrane during hypoxia. J Physiol London 500:379–384PubMedGoogle Scholar
  12. 12.
    Saraví FD, Chirino DR, Saldeña TA, Cincunegui LM, Carra GE, Ituarte LM (2002) Chronic hypobaric hypoxia effects on rat colon in vitro sensitivity to acute hypoxia and amiloride. Dig Dis Sci 47:1086–1090PubMedCrossRefGoogle Scholar
  13. 13.
    Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:345–389Google Scholar
  14. 14.
    Saraví FD, Saldeña TA, Carrera CA, Ibáñez JE, Cincunegui LM, Carra GE (2003) Oxygen consumption and chloride secretion in rat distal colon isolated mucosa. Dig Dis Sci 48:1767–1773PubMedCrossRefGoogle Scholar
  15. 15.
    Edmonds CJ (1981) Amiloride sensitivity of the transepithelial electrical potential and sodium and potassium transport in rat distal colon in vivo. J Physiol London 313:547–559PubMedGoogle Scholar
  16. 16.
    Fromm M, Schulzke JD, Hegel U (1993) Control of electrogenic Na+ absorption in rat late distal colon by nanomolar aldosterone added in vitro. Am J Physiol 264:E68–E73PubMedGoogle Scholar
  17. 17.
    Pácha J, Pohlová I (1995) Relationship between dietary Na+ intake, aldosterone and colonic amiloride-sensitive Na+ transport. Br J Nutr 73:633–640PubMedCrossRefGoogle Scholar
  18. 18.
    Saraví FD, Saldeña TA, Tonn EF, Cincunegui LM, Carra GE, Ibáñez JE (2001) Sodium-deprived rat distal colon epithelial response to acute hypoxia and reoxygenation. Acta Gastroenterol Latinoam 31:123–130PubMedGoogle Scholar
  19. 19.
    Olsen NV (1995) Effect of hypoxemia on water and sodium homeostatic hormones and renal function. Acta Anaesthesiol Scand 39(Suppl 107):165–170CrossRefGoogle Scholar
  20. 20.
    Raff H, Jankowski BM, Engeland WC, Oaks MK (1996) Hypoxia in vivo inhibits aldosterone synthesis and aldosterone synthase mRNA in rats. J Appl Physiol 81:604–610PubMedGoogle Scholar
  21. 21.
    Höhne C, Boemke W, Schleyer N, Francis RC, Krebs MO, Kaczmarczyk G (2002) Low sodium intake does not impair renal compensation of hypoxia-induced respiratory alkalosis. J Appl Physiol 92:2097–2104PubMedGoogle Scholar
  22. 22.
    Kelestimur H, Leach RM, Ward JP, Forsling ML (1997) Vasopressin and oxytocin release during prolonged environmental hypoxia in the rat. Thorax 52:84–88PubMedCrossRefGoogle Scholar
  23. 23.
    Wenzl HH, Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1997) Effect of fluodrocortisone and spironolactone on sodium and potassium losses in secretory diarrhea. Dig Dis Sci 42:119–128PubMedCrossRefGoogle Scholar
  24. 24.
    Scharrer E, Hosser M (1980) Effect of feeding a high protein diet on solute-coupled water absorption from rat colon. Pflügers Arch 38:165–168CrossRefGoogle Scholar
  25. 25.
    Diener M, Scharrer E (1997) Effects of short-chain fatty acids on cell volume regulation and chloride secretion in the rat distal colon. Comp Biochem Physiol A 118:375–379CrossRefGoogle Scholar
  26. 26.
    Krishnan S, Ramakrishna BS, Binder HJ (1999) Stimulation of sodium chloride absorption from secreting rat colon by short-chain fatty acids. Dig Dis Sci 44:1924–1930PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Q, Horisberger JD, Maillard M, Brunner HR, Rossier BC, Burnier M (2000) Salt- and angiotensin II-dependent variations in amiloride-sensitive rectal potential difference in mice. Clin Exp Pharmacol Physiol 27:60–66PubMedCrossRefGoogle Scholar
  28. 28.
    Saraví FD, Saldeña TA, Carrera CA, Ibáñez JE, Cincunegui LM, Carra GE (2003) Oxygen consumption and chloride secretion in rat distal colon isolated mucosa. Dig Dis Sci 48:1767–1773PubMedCrossRefGoogle Scholar
  29. 29.
    Binder HJ, Foster ES, Budinger ME, Hayslett JP (1987) Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology 93:449–455PubMedGoogle Scholar
  30. 30.
    Turnamian SG, Binder HJ (1989) Regulation of active sodium and potassium transport in the distal colon of the rat. Role of the aldosterone and glucocorticoid receptors. J Clin Invest 84:1924–1929PubMedCrossRefGoogle Scholar
  31. 31.
    Inagaki A, Yamaguchi S, Ishikawa T (2004) Amiloride-sensitive epithelial Na+ channel currents in surface cells of rat rectal colon. Am J Physiol 286:C380–C390CrossRefGoogle Scholar
  32. 32.
    Bern MJ, Sturbaum CW, Karayalcin SS (1989) Immune system control of rat and rabbit colonic electrolyte transport. J Clin Invest 83:1810–1820PubMedCrossRefGoogle Scholar
  33. 33.
    Thiagarajah JR, Verkman AS (2003) CFTR pharmacology and its role in intestinal fluid secretion. Curr Opin Pharmacol 3:594–599PubMedCrossRefGoogle Scholar
  34. 34.
    Ecke D, Bleich M, Greger R (1996) The amiloride inhibitable Na+ conductance of rat colonic crypt cells is suppressed by forskolin. Pflügers Arch 431:984–986PubMedGoogle Scholar
  35. 35.
    Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79(Suppl):S145–S166PubMedGoogle Scholar
  36. 36.
    Schreiber R, Konig J, Sun J, Markovich D, Kunzelmann K (2003) Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes. J Membr Biol 192:101–110PubMedCrossRefGoogle Scholar
  37. 37.
    Harvey BJ, Doolan CM, Condliffe SB, Renard C, Alzamora R, Urbach V (2002) Non-genomic convergent and divergent signaling of rapid responses to aldosterone and estradiol in mammalian colon. Steroids 6:483–491CrossRefGoogle Scholar
  38. 38.
    Li Y, Halm DR (2002) Secretory modulation of basolateral membrane inwardly rectified K+ channel in guinea pig distal colonic crypts. Am J Physiol 282:C719–C735Google Scholar
  39. 39.
    Bowley KA, Morton MJ, Hunter M, Sandle GI (2003) Non-genomic regulation of intermediate conductance potassium channels by aldosterone in human colonic crypt cells. Gut 52:854–860PubMedCrossRefGoogle Scholar
  40. 40.
    Warth R, Riedemann N, Bleich M, Van Driessche W, Busch AE, Greger R (1996) The camp-regulated and 293B-inhibited K+ conductance of rat colonic crypt cells. Pflügers Arch 432:81–88PubMedCrossRefGoogle Scholar
  41. 41.
    Liao T, Wang L, Halm ST, Lu L, Fyffe RE, Halm DR (2005) K+ channel KVLT1 located in the basolateral membrane of distal colonic epithelium is not essential fir activating Cl secretion. Am J Physiol 289:C564–C575CrossRefGoogle Scholar
  42. 42.
    Nzegwu HC, Levin RJ (1992) Dietary restriction sensitizes the rat distal colon to aldosterone. J Physiol London 447:501–512PubMedGoogle Scholar
  43. 43.
    Singh SB, Panjwani U, Yadav DK, Chandra K, Sharma K, Selvamurthy W (1997) Hypobaric hypoxia and hedonic matrix in rats. Jpn J Physiol 47:327–333PubMedCrossRefGoogle Scholar
  44. 44.
    Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177PubMedCrossRefGoogle Scholar
  45. 45.
    Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflügers Arch 450:363–371PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liliana M. Cincunegui
    • 1
  • Leonor M. I. Ituarte
    • 1
  • Teresa B. Viera
    • 1
  • Jorge E. Ibañez
    • 1
  • Graciela E. Carra
    • 1
  • Teobaldo A. Saldeña
    • 1
  • Fernando D. Saravi
    • 1
  1. 1.Area de Física Biológica, Departamento de Morfología y Fisiología, Facultad de Ciencias MédicasUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations