Advertisement

Digestive Diseases and Sciences

, Volume 53, Issue 6, pp 1707–1715 | Cite as

The Effect of PPARα and PPARγ Ligands on Inflammation and ABCA1 Expression in Cultured Gallbladder Epithelial Cells

  • Jin Lee
  • Eun Mi Hong
  • Hyun Woo Byun
  • Min Ho Choi
  • Hyun Joo Jang
  • Chang Soo Eun
  • Sea Hyub Kae
  • Ho Soon Choi
Original Paper

Abstract

The preservation of gallbladder function by control of inflammation and elimination of cholesterol accumulation in gallbladder epithelial cells (GBEC) could contribute to the prevention of gallstone formation and cholecystitis. Peroxisome proliferator-activated receptors (PPARs) modulate inflammation and lipid metabolism in various cells and GBEC efflux of excessive amounts of absorbed cholesterol through the ATP-binding cassette transporter A1 (ABCA1)-mediated pathway. The aim of this study was to determine whether ligands of PPARα and PPARγ modulate inflammation and have an effect on ABCA1 expression in GBEC. Canine GBEC were cultured on dishes coated with collagen matrix. We performed Western blot analysis for the expression of specific protein and/or RT-PCR for the expression of specific mRNA. PPARα and PPARγ expression was observed and increased in GBEC treated with WY-14643 (PPARα ligand), troglitazone (PPARγ ligand), and lipopolysaccharide (LPS) compared to the no-treatment control and PPARα antagonist (GW-9662) treatment group. WY-14643, troglitazone, and LPS also induced an increase in the expression of ABCA1 protein and mRNA in cultured GBEC. LPS-induced TNFα mRNA expression was suppressed by pre-treatment with WY-14643 and troglitazone preceding LPS treatment in GBEC. PPAR ligands, especially PPARγ, may preserve gallbladder function by suppression of inflammatory reaction and prevention of cholesterol accumulation in GBEC, contributing to the prevention of gallstone formation and progression to cholecystitis.

Keywords

Gallbladder Gallstone Peroxisome proliferator-activated receptor (PPAR) ATP-binding cassette transporter A1 (ABCA1) 

Notes

Acknowledgment

This study was supported by the 2006 Clinical Research Fund of Hallym Medical Center, Seoul. Korea. We thank Rahul Kuver and Sum P. Lee (Division of Gastroenterology, University of Washington School of Medicine, Seattle, USA) for the kind gift of the GBEC.

References

  1. 1.
    van Erpecum KJ (2005) Biliary lipids, water and cholesterol gallstones. Biol Cell 97:815–822PubMedCrossRefGoogle Scholar
  2. 2.
    Carey MC (1993) Pathogenesis of gallstones. Am J Surg 165:410–419PubMedCrossRefGoogle Scholar
  3. 3.
    Schoenfield LJ, Carey MC, Marks JW, Thistle JL (1989) Gallstones: an update. Am J Gastroenterol 84:999–1007PubMedGoogle Scholar
  4. 4.
    Xiao ZL, Biancani P, Behar J (2004) Role of PGE2 on gallbladder muscle cytoprotection of guinea pigs. Am J Physiol Gastrointest Liver Physiol 286:G82–G88PubMedCrossRefGoogle Scholar
  5. 5.
    Rege RV (2000) Inflammatory cytokines alter human gallbladder epithelial cell absorption/secretion. J Gastrointest Surg 4:185–192PubMedCrossRefGoogle Scholar
  6. 6.
    Corradini SG, Elisei W, Giovannelli L, Ripani C, Della Guardia P, Corsi A, Cantafora A, Capocaccia L, Ziparo V, Stipa V, Chirletti P, Caronna R, Lomanto D, Attili AF (2000) Impaired human gallbladder lipid absorption in cholesterol gallstone disease and its effect on cholesterol solubility in bile. Gastroenterology 118: 912–920PubMedCrossRefGoogle Scholar
  7. 7.
    Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG, Seilhamer JJ, Vaughan AM, Oram JF (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104:R25–R31PubMedCrossRefGoogle Scholar
  8. 8.
    Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest J Jr, Hayden MR (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics 22:336–345PubMedCrossRefGoogle Scholar
  9. 9.
    Oram JF (2000) Tangier disease and ABCA1. Biochim Biophys Acta 1529:321–330PubMedGoogle Scholar
  10. 10.
    Lee J, Shirk A, Oram JF, Lee SP, Kuver R (2002) Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway. Biochem J 364:475–484PubMedCrossRefGoogle Scholar
  11. 11.
    Lee J, Tauscher A, Seo DW, Oram JF, Kuver R (2003) Cultured gallbladder epithelial cells synthesize apolipoproteins A-I and E. Am J Physiol Gastrointest Liver Physiol 285:G630–G641PubMedGoogle Scholar
  12. 12.
    Hirakata M, Tozawa R, Imura Y, Sugiyama Y (2004) Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun 323:782–788PubMedCrossRefGoogle Scholar
  13. 13.
    Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 1583:841–850CrossRefGoogle Scholar
  14. 14.
    Francis GA, Annicotte JS, Auwerx J (2003) PPAR agonists in the treatment of atherosclerosis. Curr Opin Pharmacol 3:186–191PubMedCrossRefGoogle Scholar
  15. 15.
    Francis GA, Annicotte JS, Auwerx J (2003) PPAR-alpha effects on the heart and other vascular tissues. Am J Physiol Heart Circ Physiol 285:H1–H9PubMedGoogle Scholar
  16. 16.
    Daynes R, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRefGoogle Scholar
  17. 17.
    Simonin MA, Bordji K, Boyault S, Bianchi A, Gouze E, Becuwe P, Dauca M, Netter P, Terlain B (2002) PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts. Am J Physiol Cell Physiol 282:C125–C133PubMedGoogle Scholar
  18. 18.
    Ory DS (2004) Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ res 95:660–670PubMedCrossRefGoogle Scholar
  19. 19.
    Fitzgerald ML, Moore KJ, Freeman MW (2002) Nuclear hormone receptors and cholesterol trafficking: the orphans find a new home. J Mol Med 80: 271–281PubMedCrossRefGoogle Scholar
  20. 20.
    Gbaguidi GF, Agellon LB (2004) The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer. Nucleic Acids Res 32:1113–1121PubMedCrossRefGoogle Scholar
  21. 21.
    Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58PubMedCrossRefGoogle Scholar
  22. 22.
    Pan GD, Wu H, Liu JW, Cheng NS, Xiong XZ, Li SF, Zhang GF, Yan LN (2005) Effect of peroxisome proliferator-activated receptor-gamma ligand on inflammation of human gallbladder epithelial cells. World J Gastroenterol 11:6061–6065PubMedGoogle Scholar
  23. 23.
    Cha JY, Repa JJ (2007) The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282:743–751PubMedCrossRefGoogle Scholar
  24. 24.
    Sterling RK, Shiffman ML, Sugerman HJ, Moore EW (1995) Effect of NSAIDs on gallbladder bile composition. Dig Dis Sci 40:2220–2226PubMedCrossRefGoogle Scholar
  25. 25.
    Oda D, Lee SP, Hayashi A (1991) Long-term culture and partial characterization of dog gallbladder epithelial cells. Lab Invest 64:682–693PubMedGoogle Scholar
  26. 26.
    Jacyna MR, Ross PE, Bakar MA, Hopwood D, Bouchier IA (1987) Characteristics of cholesterol absorption by human gall bladder: relevance to cholesterolosis. J Clin Pathol 40:524–529PubMedCrossRefGoogle Scholar
  27. 27.
    Lahera V, Goicoechea M, de Vinuesa SG, Miana M, de Las Heras N, Cachofeiro V, Luno J (2007) Endothelial dysfunction, oxidative stress and inflammation in atherosclerosis: beneficial effects of statins. Curr Med Chem 14:243–248PubMedCrossRefGoogle Scholar
  28. 28.
    Yang SY, Jun DW, Han SH, Yoon CO, Choi HS, Lee OY, Yoon BC, Hahm JS, Lee MH, Lee DH, Kee CS, Lee J, Kuver R, Lee SP (2005) The molecular mechanisms of cholesterol efflux by reverse cholesterol transporter (ABCA1) of human gallbladder epithelial cells. J Gastroen Hepatol 20(suppl):A304Google Scholar
  29. 29.
    Quinet EM, Savio DA, Halpern AR, Chen L, Schuster GU, Gustafsson JA, Basso MD, Nambi P (2006) Liver X receptor (LXR)-beta regulation in LXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol 70:1340–1349PubMedCrossRefGoogle Scholar
  30. 30.
    Oram JF (2002) ABCA1 as a new therapeutic target for treating cardiovascular disease. Drug News Perspect 15:24–28PubMedCrossRefGoogle Scholar
  31. 31.
    Costet P, Luo Y, Wang N, Tall AR (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275:28240–28245PubMedGoogle Scholar
  32. 32.
    Tobin KA, Steineger HH, Alberti S, Spydevold O, Auwerx J, Gustafsson JA, Nebb HI (2000) Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol Endocrinol 14:741–752PubMedCrossRefGoogle Scholar
  33. 33.
    Vasudevan AR, Jones PH (2005) Effective use of combination lipid therapy. Curr Cardiol Rep 7:471–479PubMedCrossRefGoogle Scholar
  34. 34.
    Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28:1547–1554PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR (2005) Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 46:2377–2387PubMedCrossRefGoogle Scholar
  36. 36.
    Baranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley AT, Stonik J, Eggerman TL, Patterson AP (2002) Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect Immun 70:2995–3003PubMedCrossRefGoogle Scholar
  37. 37.
    Khovidhunkit W, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR (2003) Endotoxin down-regulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages: differential role of LXR. J Lipid Res 2003 44:1728–1736CrossRefGoogle Scholar
  38. 38.
    Koseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, Sandoval JC, Nakagawa-Toyama Y, Sato SB, Kobayashi T, Shimada Y, Ohno-Iwashita Y, Matsuura F, Shimomura I, Yamashita S (2007) Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-{alpha} secretion in Abca1-deficient macrophages. J Lipid Res 48:299–306PubMedCrossRefGoogle Scholar
  39. 39.
    Kaplan R, Gan X, Menke JG, Wright SD, Cai TQ (2002) Bacterial lipopolysaccharide induces expression of ABCA1 but not ABCG1 via an LXR-independent pathway. J Lipid Res 43:952–959PubMedGoogle Scholar
  40. 40.
    Yoshida T, Matsuzaki Y, Haigh WG, Fukushima S, Ikezawa K, Tanaka N, Lee SP (2003) Origin of oxysterols in hepatic bile of patients with biliary infection. Am J Gastroenterol 98:2275–2280PubMedCrossRefGoogle Scholar
  41. 41.
    Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMedCrossRefGoogle Scholar
  42. 42.
    Clark RB (2002) The role of PPARs in inflammation and immunity. J Leukoc Biol 71:388–400PubMedGoogle Scholar
  43. 43.
    Shaffer EA (2006) Gallstone disease: Epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol 20:981–996PubMedCrossRefGoogle Scholar
  44. 44.
    Caroli-Bosc FX, Le Gall P, Pugliese P, Delabre B, Caroli-Bosc C, Demarquay JF, Delmont JP, Rampal P, Montet JC (2001) Role of fibrates and HMG-CoA reductase inhibitors in gallstone formation: epidemiological study in an unselected population. Dig Dis Sci 46:540–544PubMedCrossRefGoogle Scholar
  45. 45.
    Roglans N, Vazquez-Carrera M, Alegret M, Novell F, Zambon D, Ros E, Laguna JC, Sanchez RM (2004) Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. Eur J Clin Pharmacol 59:855–861PubMedCrossRefGoogle Scholar
  46. 46.
    Post SM, Duez H, Gervois PP, Staels B, Kuipers F, Princen HM (2001) Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-alpha-mediated downregulation of cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase expression. Arterioscler Thromb Vasc Biol 21:1840–1845PubMedCrossRefGoogle Scholar
  47. 47.
    Hudson K, Mojumder S, Day AJ (1983) The effect of bezafibrate and clofibrate on cholesterol ester metabolism in rabbit peritoneal macrophages stimulated with acetylated low density lipoproteins. Exp Mol Pathol 38:77–81PubMedCrossRefGoogle Scholar
  48. 48.
    Kosters A, Frijters RJ, Schaap FG, Vink E, Plosch T, Ottenhoff R, Jirsa M, De Cuyper IM, Kuipers F, Groen AK (2003) Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 38:710–716PubMedCrossRefGoogle Scholar
  49. 49.
    Miyake JH, Wang SL, Davis RA (2000) Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase. J Biol Chem 275:21805–21808PubMedCrossRefGoogle Scholar
  50. 50.
    Bertolotti M, Gabbi C, Anzivino C, Mitro N, Godio C, De Fabiani E, Crestani M, Del Puppo M, Ricchi M, Carulli L, Rossi A, Loria P, Carulli N (2006) Decreased hepatic expression of PPAR-gamma coactivator-1 in cholesterol cholelithiasis. Eur J Clin Invest 36:170–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jin Lee
    • 1
  • Eun Mi Hong
    • 1
  • Hyun Woo Byun
    • 1
  • Min Ho Choi
    • 1
  • Hyun Joo Jang
    • 1
  • Chang Soo Eun
    • 1
  • Sea Hyub Kae
    • 1
  • Ho Soon Choi
    • 2
  1. 1.Division of Gastroenterology, Department of Internal MedicineHallym University Hangang Sacred Heart HospitalSeoulSouth Korea
  2. 2.Division of Gastroenterology, Department of Internal MedicineHanyang University College of MedicineSeoulSouth Korea

Personalised recommendations