Digestive Diseases and Sciences

, Volume 52, Issue 12, pp 3334–3339 | Cite as

TNF Microsatellite Alleles in Brazilian Chagasic Patients

  • Viriato Campelo
  • Roberto O. Dantas
  • Renata T. Simões
  • Celso T. Mendes-Junior
  • Sandra M. B. Sousa
  • Aguinaldo L. Simões
  • Eduardo A. Donadi


To evaluate the tumor necrosis factor (TNF) a–e microsatellite polymorphism in Chagasic patients, we studied 162 patients stratified according to the major clinical variants (cardiac, digestive, digestive plus cardiac, and indeterminate forms) and 221 healthy controls. TNF microsatellite alleles were typed using genomic DNA amplified with specific primers. Statistical analyses were performed using the GENEPOP and ARLEQUIN softwares and the two-tailed Fisher exact test. The TNFa2, TNFa7, TNFa8, TNFb2, TNFb4, TNFd5, TNFd7, and TNFe2 alleles were overrepresented, whereas the TNFb7 and TNFd3 alleles were underrepresented when clinical variants of Chagas’ disease or the patient group as a whole were compared with controls. Twelve TNF haplotypes were associated with susceptibility to or protection against Chagas’ disease, considered as a whole or stratified into clinical variants. Many of these haplotypes encompassed the above-described susceptibility/protective alleles. These results indicate that the TNF chromosomal region is relevant for Chagas’ disease development.


Microsatellite repeats Tumor necrosis factor Chagas’ disease Case-control studies 



This study was financially supported by the following: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FAEPA), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). C.T.M.-J. is supported by a postdoctoral fellowship (150996/2005-5) from CNPq/Brazil.


  1. 1.
    Moncayo A (1999) Progress towards interruption of transmission of Chagas disease. Mem Inst Oswaldo Cruz 94:401–404PubMedCrossRefGoogle Scholar
  2. 2.
    Kierszenbaum F (1999) Chagas’ disease and the autoimmunity hypothesis. Clin Microbiol Rev 12:210–223PubMedGoogle Scholar
  3. 3.
    Silva JS, Vespa GN, Cardoso MA, Aliberti JC, Cunha FQ (1995) Tumor necrosis factor alpha mediates resistance to Trypanosoma cruzi infection in mice by inducing nitric oxide production in infected gamma interferon-activated macrophages. Infect Immun 63:4862–4867PubMedGoogle Scholar
  4. 4.
    Aliberti JC, Souto JT, Marino AP, Lannes-Vieira J, Teixeira MM, Farber J, Gazzinelli RT, Silva JS (2001) Modulation of chemokine production and inflammatory responses in interferon-gamma- and tumor necrosis factor-R1-deficient mice during Trypanosoma cruzi infection. Am J Pathol 158:1433–1440PubMedGoogle Scholar
  5. 5.
    Reis DD, Jones EM, Tostes S Jr, Lopes ER, Gazzinelli G, Colley DG, McCurley TL (1993) Characterization of inflammatory infiltrates in chronic chagasic myocardial lesions: presence of tumor necrosis factor-alpha+ cells and dominance of granzyme A+, CD8+ lymphocytes. Am J Trop Med Hyg 48:637–644PubMedGoogle Scholar
  6. 6.
    Cunha-Neto E, Rizzo LV, Albuquerque F, Abel L, Guilherme L, Bocchi E, Bacal F, Carrara D, Ianni B, Mady C, Kalil J (1998) Cytokine production profile of heart-infiltrating T cells in Chagas’ disease cardiomyopathy. Braz J Med Biol Res 31:133–137PubMedCrossRefGoogle Scholar
  7. 7.
    Deghaide NH, Dantas RO, Donadi EA (1998) HLA class I and II profiles of patients presenting with Chagas’ disease. Dig Dis Sci 43:246–252PubMedCrossRefGoogle Scholar
  8. 8.
    Udalova IA, Nedospasov SA, Webb GC, Chaplin DD, Turetskaya RL (1993) Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 16:180–186PubMedCrossRefGoogle Scholar
  9. 9.
    Tsukamoto K, Ohta N, Shirai Y, Emi M (1998) A highly polymorphic CA repeat marker at the human tumor necrosis factor alpha (TNFA alpha) locus. J Hum Genet 43:278–279PubMedCrossRefGoogle Scholar
  10. 10.
    Hajeer AH, Hutchinson IV (2001) Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum Immunol 62:1191–1199PubMedCrossRefGoogle Scholar
  11. 11.
    Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hession C, O’Brine-Greco B, Foley SF, Ware CF (1993) Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72:847–856PubMedCrossRefGoogle Scholar
  12. 12.
    Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007PubMedCrossRefGoogle Scholar
  13. 13.
    Almeida IC, Rodrigues EG, Travassos LR (1994) Chemiluminescent immunoassays: discrimination between the reactivities of natural and human patient antibodies with antigens from eukaryotic pathogens, Trypanosoma cruzi and Paracoccidioides brasiliensis. J Clin Lab Anal 8:424–431PubMedCrossRefGoogle Scholar
  14. 14.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  15. 15.
    Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921PubMedGoogle Scholar
  16. 16.
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  17. 17.
    Svejgaard A, Ryder LP (1994) HLA and disease associations: detecting the strongest association. Tissue Antigens 43:18–27PubMedCrossRefGoogle Scholar
  18. 18.
    Svejgaard A (1986) HLA and disease. In: Manual of clinical laboratory immunology. NR Rose, H Friedman, JL Fahey (eds). American Society for Microbiology, Washington, DC, pp 912–920Google Scholar
  19. 19.
    Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921–927PubMedGoogle Scholar
  20. 20.
    Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Version 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva, Geneva, SwitzerlandGoogle Scholar
  22. 22.
    Stenzel A, Lu T, Koch WA, Hampe J, Guenther SM, De La Vega FM, Krawczak M, Schreiber S (2004) Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet 114:377–385PubMedCrossRefGoogle Scholar
  23. 23.
    Simoes RT, Bettini JS, Soares EG, Duarte G, Goncalves MA, Simoes AL (2003) Tumour necrosis factor microsatellite association with human papillomavirus cervical infection. Mol Pathol 56:305–306PubMedCrossRefGoogle Scholar
  24. 24.
    Crouau-Roy B, Briant L, Bouissou C, Stravropoulos C, Pociot F, Cambon-Thomsen A, Clayton J (1993) Tumor necrosis factor microsatellites in four European populations. Hum Immunol 38:213–216PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Viriato Campelo
    • 1
    • 4
  • Roberto O. Dantas
    • 2
  • Renata T. Simões
    • 2
  • Celso T. Mendes-Junior
    • 2
  • Sandra M. B. Sousa
    • 3
  • Aguinaldo L. Simões
    • 3
  • Eduardo A. Donadi
    • 2
  1. 1.Department of Parasitology and Microbiology, Center of Health Science (CCS)University Federal of Piauí (UFPI)Teresina-PIBrazil
  2. 2.Department of Medicine, Faculty of Medicine of Ribeirão Preto (FMRP)University of São Paulo (USP)Ribeirão Preto-SPBrazil
  3. 3.Department of Genetics, Faculty of Medicine of Ribeirão Preto (FMRP)University of São Paulo (USP)Ribeirão Preto-SPBrazil
  4. 4.Departamento de Parasitologia e Microbiologia, Centro de Ciências da SaúdeUniversidade Federal do PiauíTeresina-PIBrazil

Personalised recommendations