Advertisement

Digestive Diseases and Sciences

, Volume 51, Issue 6, pp 1043–1046 | Cite as

Response to Imatinib in KIT- and PDGFRA-Wild Type Gastrointestinal Stromal Associated with Neurofibromatosis Type 1

  • Jae-Lyun Lee
  • Jin Young Kim
  • Min-Hee Ryu
  • Hye Jin Kang
  • Heung Moon Chang
  • Tae-Won Kim
  • Hyoungnam Lee
  • Ji Hyun Park
  • Hee Cheol Kim
  • Jung Sun Kim
  • Yoon-Koo Kang
Gastrointestinal Oncology

Keywords

gastrointestinal stromal tumor imatinib neurofibromatosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corless CL, Fletcher JA, Heinrich MC: Biology of gastrointestinal stromal tumors. J Clin Oncol 22:3813–3825, 2004PubMedCrossRefGoogle Scholar
  2. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA: Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349, 2003PubMedCrossRefGoogle Scholar
  3. Zoller ME, Rembeck B, Oden A, Samuelsson M, Angervall L: Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 79:2125–2131, 1997PubMedCrossRefGoogle Scholar
  4. Miettinen M, Lasota J: Gastrointestinal stromal tumors—definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438:1–12, 2001PubMedCrossRefGoogle Scholar
  5. Kinoshita K, Hirota S, Isozaki K, Ohashi A, Nishida T, Kitamura Y, Shinomura Y, Matsuzawa Y: Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J Pathol 202:80–85, 2004PubMedCrossRefGoogle Scholar
  6. Kim TW, Lee H, Kang Y-K, Choe MS, Ryu M-H, Chang HM, Kim JS, Yook JH, Kim BS, Lee JS: Prognostic significance of c-kit mutation in localized gastrointestinal stromal tumors. Clin Cancer Res 10:3076–3081, 2004PubMedCrossRefGoogle Scholar
  7. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA: PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:708–710, 2003PubMedCrossRefGoogle Scholar
  8. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–578, 1988Google Scholar
  9. Fuller CE, Williams GT: Gastrointestinal manifestations of type 1 neurofibromatosis (von Recklinghausen's disease). Histopathology 19:1–11, 1991PubMedGoogle Scholar
  10. Cheng SP, Huang MJ, Yang TL, Tzen CY, Liu CL, Liu TP, Hsiao SC: Neurofibromatosis with gastrointestinal stromal tumors: insights into the association. Dig Dis Sci 49:1165–1169, 2004PubMedCrossRefGoogle Scholar
  11. Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM: The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849, 1990PubMedCrossRefGoogle Scholar
  12. Bajenaru ML, Donahoe J, Corral T, Reilly KM, Brophy S, Pellicer A, Gutmann DH: Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia 33:314–323, 2001PubMedCrossRefGoogle Scholar
  13. Ingram DA, Yang FC, Travers JB, Wenning MJ, Hiatt K, New S, Hood A, Shannon K, Williams DA, Clapp DW: Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191:181–188, 2000PubMedCrossRefGoogle Scholar
  14. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, Hibbard MK, Chen CJ, Xiao S, Tuveson DA, Demetri GD, Fletcher CD, Fletcher JA: KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61:8118–8121, 2001PubMedGoogle Scholar
  15. Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW: Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1–/– cells. J Biol Chem 276:7240–7245, 2001PubMedCrossRefGoogle Scholar
  16. Birnbaum RA, O'Marcaigh A, Wardak Z, Zhang YY, Dranoff G, Jacks T, Clapp DW, Shannon KM: Nf1 and Gmcsf interact in myeloid leukemogenesis. Mol Cell 5:189–195, 2000PubMedCrossRefGoogle Scholar
  17. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K: Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12:144–148, 1996PubMedCrossRefGoogle Scholar
  18. Ingram DA, Wenning MJ, Shannon K, Clapp DW: Leukemic potential of doubly mutant Nf1 and Wv hematopoietic cells. Blood 101:1984–1986, 2003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Jae-Lyun Lee
    • 1
  • Jin Young Kim
    • 1
  • Min-Hee Ryu
    • 1
  • Hye Jin Kang
    • 1
  • Heung Moon Chang
    • 1
  • Tae-Won Kim
    • 1
  • Hyoungnam Lee
    • 1
  • Ji Hyun Park
    • 1
  • Hee Cheol Kim
    • 2
  • Jung Sun Kim
    • 3
  • Yoon-Koo Kang
    • 1
  1. 1.Department of Internal MedicineUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulKorea
  2. 2.Department of SurgeryUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulKorea
  3. 3.Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulKorea

Personalised recommendations