Distributed and Parallel Databases

, Volume 37, Issue 3, pp 441–468 | Cite as

Horizontal fragmentation for fuzzy querying databases

  • Asmaa Drissi
  • Safia Nait-Bahloul
  • Karim BenouaretEmail author
  • Djamal Benslimane
Part of the following topical collections:
  1. Special Issue on Extending Data Warehouses to Big Data Analytics


Fuzzy querying is one of the main research topics of database investigators. Several research works to date focused on building fuzzy data models, fuzzy query languages, and fuzzy database systems. However, such systems turn out to be less efficient when it comes to querying very large data. Therefore, improving the performance of such database systems is an important research issue. In this paper, we address this issue by proposing a complete fragmentation methodology. Especially, we propose an horizontal fragmentation algorithm as well as different query execution strategies whose aim is minimizing the number of fragment accesses. Extensive experimental evaluation demonstrates the efficiency of our framework scaling up to millions of tuples.


Fuzzy querying Fragmentation Query optimization 



  1. 1.
    Abdalla, H.I., Amer, A.A.: Dynamic horizontal fragmentation, replication and allocation model in ddbss. In: 2012 International Conference on Information Technology and e-Services (ICITeS), pp. 1–7. IEEE (2012)Google Scholar
  2. 2.
    Aguilera, A., Cadenas, J.T., Tineo, L.: Fuzzy querying capability at core of a rdbms. In: Yan, L. (ed.) Advanced Database Query Systems: Techniques, Applications and Technologies, pp. 160–184. IGI Global, Hershey (2011)CrossRefGoogle Scholar
  3. 3.
    Baião, F., Mattoso, M.: A mixed fragmentation algorithm for distributed object oriented databases. In: Proceedings of International Conference on Computing and Information (ICCI’98), Winnipeg, pp. 141–148 (1998)Google Scholar
  4. 4.
    Barbet, A., Guillard, F.: Refonte du prototype d’interrogation floue iSQLF. Rapport de projet, laboratoire lannionais d’informatique, ENSSAT LANNION (2007)Google Scholar
  5. 5.
    Barr, M., Bellatreche, L.: Approche dirigée par les fourmis pour la fragmentation horizontale dans les entrepôts de données relationnels. Revue 6, 17 (2012)Google Scholar
  6. 6.
    Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in object-oriented databases. In: Database and Expert Systems Applications, pp. 58–67. Springer (1997)Google Scholar
  7. 7.
    Bernatowicz, D., Bernatowicz, A.: Application of correlation in the vertical fragmentation based on statistic of queries. Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej pp. 77–87 (2014)Google Scholar
  8. 8.
    Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: Proceedings of the 1994 ACM symposium on Applied computing, pp. 170–174. ACM (1994)Google Scholar
  9. 9.
    Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)CrossRefGoogle Scholar
  10. 10.
    Bouchon-Meunier, B.: La logique floue: Que sais-je ? n\(\circ \) 2702. Presses universitaires de France (2007)Google Scholar
  11. 11.
    Boukraâ, D., Boussaïd, O., Bentayeb, F.: Vertical fragmentation of xml data warehouses using frequent path sets. In: International Conference on Data Warehousing and Knowledge Discovery, pp. 196–207. Springer (2011)Google Scholar
  12. 12.
    Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design. In: Proceedings of the 1982 ACM SIGMOD international conference on Management of data, pp. 128–136. ACM (1982)Google Scholar
  13. 13.
    Darabant, A.S., Darabant, L.: Clustering methods in data fragmentation. Rom. J. Inf. Sci. Technol. 14(1), 81–97 (2011)zbMATHGoogle Scholar
  14. 14.
    Darabant, A., Câmpan, A., Moldovan, G., Grebla, H.: Ai clustering techniques: a new approach in horizontal fragmentation of classes with complex attributes and methods in object oriented databases. In: The Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics-ICTAMI, pp. 109–128 (2004)Google Scholar
  15. 15.
    Du, J., Barker, K., Alhajj, R.: Attraction-a global affinity measure for database vertical partitioning. In: ICWI, pp. 538–548 (2003)Google Scholar
  16. 16.
    Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: Why and how? In: Andreasen, T. (ed.) Flexible Query Answering Systems, pp. 45–60. Springer, Berlin (1997)CrossRefGoogle Scholar
  17. 17.
    Elhoussaine, Z., Aboutajdine, D., El Qadi, A.: Complete algorithm for fragmentation in data warehouse. Age 1(2), 1 (2008)Google Scholar
  18. 18.
    Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for fuzzy sql queries. In: International Conference on Flexible Query Answering Systems, pp. 164–174. Springer (1998)Google Scholar
  19. 19.
    Goncalves, M., Tineo, L.: Sqlf flexible querying language extension by means of the norm sql2. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 473–476. IEEE (2001)Google Scholar
  20. 20.
    Goncalves, M., Tineo, L.: Sqlf3: An extension of sqlf with sql3 features. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 477–480. IEEE (2001)Google Scholar
  21. 21.
    Goncalves, M., Tineo, L.: Sqlfi y sus aplicaciones. Rev. Av. Sist. Inf. 5(2), 33–40 (2008)Google Scholar
  22. 22.
    González, E., Rodríguez, R., Tineo, L.: Prototipo experimental para consultas difusas (2012)Google Scholar
  23. 23.
    Hoffer, J.A., Severance, D.G.: The use of cluster analysis in physical data base design. In: Proceedings of the 1st International Conference on Very Large Data Bases, pp. 69–86. ACM (1975)Google Scholar
  24. 24.
    HyunSon, J., HoKim, M.: \(\alpha \)-partitioning algorithm: Vertical partitioning based on the fuzzy graph. In: Database and Expert Systems Applications, pp. 537–546. Springer (2001)Google Scholar
  25. 25.
    Karima, T., Abdellatif, A., Ounalli, H.: Data mining based fragmentation technique for distributed data warehouses environment using predicate construction technique. In: 2010 Sixth International Conference on Networked Computing and Advanced Information Management (NCM), pp. 63–68. IEEE (2010)Google Scholar
  26. 26.
    Kechar, M., Nait-Bahloul, S.: Hybrid fragmentation of xml data warehouse using k-means algorithm. In: East European Conference on Advances in Databases and Information Systems, pp. 70–82. Springer (2014)Google Scholar
  27. 27.
    Lee, D., Kim, M.H., Lee-Kwang, H., Lee, Y.J.: A fuzzification of the relational data model. In: DASFAA, pp. 360–367 (1993)Google Scholar
  28. 28.
    Mahboubi, H., Darmont, J.: Data mining-based fragmentation of xml data warehouses. In: Proceedings of the ACM 11th international workshop on Data warehousing and OLAP, pp. 9–16. ACM (2008)Google Scholar
  29. 29.
    Mala, I., Akhtar, P., Zia, S.S., Mirza, S.H.: Application of fuzzy relational databases in medical informatics. In: 2011 IEEE 14th International on Multitopic Conference (INMIC), pp. 41–44. IEEE (2011)Google Scholar
  30. 30.
    Mala, I., Akhtar, P., Rehman Memon, A., Ali, T.: Fdsl tool: an approach of fuzzy relational database management system. Life Sci. J. 10, 1606–1612 (2013)Google Scholar
  31. 31.
    McCormick Jr., W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20(5), 993–1009 (1972)CrossRefzbMATHGoogle Scholar
  32. 32.
    Medina, J.M., Pons, O., Vila, M.A.: Gefred: a generalized model of fuzzy relational databases. Inf. Sci. 76(1–2), 87–109 (1994)CrossRefGoogle Scholar
  33. 33.
    Medina Rodríguez, J.M., Pons Capote, O., Vila Miranda, M.A., Cubero Talavera, J.C.: Client/server architecture for fuzzy relational databases. Math. Soft Comput. 3(3), 415–424 (1996)Google Scholar
  34. 34.
    Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms for database design. ACM Trans. Database Syst. (TODS) 9(4), 680–710 (1984)CrossRefGoogle Scholar
  35. 35.
    Navathe, S., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for initial distributed database design. J. Comput. Softw. Eng. 3(4), 395–426 (1995)Google Scholar
  36. 36.
    Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer Science & Business Media, New York (2011)Google Scholar
  37. 37.
    Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Inf. Sci. 34(2), 115–143 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ra, M.: Horizontal partitioning for distributed database design: a graph-based approach. In: Australian Database Conference, pp. 101–120 (1993)Google Scholar
  39. 39.
    Rodríguez, L.J.T.: Extending rdbms for allowing fuzzy quantified queries. In: International Conference on Database and Expert Systems Applications, pp. 407–416. Springer (2000)Google Scholar
  40. 40.
    Samuel, B.: Interrogation floue de bases de données: extension de iSQLf. Rapport de projet, laboratoire lannionais d’informatique, ENSSAT LANNION (2005)Google Scholar
  41. 41.
    Škrbić, S., Racković, M.: Pfsql: a fuzzy sql language with priorities. In: Proceedings of the 4th International Conference on Engineering Technologies, Novi Sad, Serbia, pp. 58–63 (2009)Google Scholar
  42. 42.
    Smits, G., Pivert, O., Girault, T.: Postgresqlf: un système dinterrogation floue. Actes des 28e journées Bases de Données Avancées (BDA12), Session démonstrations (2012)Google Scholar
  43. 43.
    Smits, G., Pivert, O., Girault, T.: Reqflex: fuzzy queries for everyone. PVLDB 6(12), 1206–1209 (2013)Google Scholar
  44. 44.
    Tahani, V.: A conceptual framework for fuzzy query processinga step toward very intelligent database systems. Inf. Process. Manag. 13(5), 289–303 (1977)CrossRefzbMATHGoogle Scholar
  45. 45.
    Takaci, A., Škrbic, S.: Data model of frdb with different data types and pfsql. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 407–434. IGI Global, Hershey (2008)CrossRefGoogle Scholar
  46. 46.
    Umano, M.: Freedom-0: a fuzzy database system. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 339–347. North-Holland, Amsterdam (1982)Google Scholar
  47. 47.
    Umano, M., Fukami, S.: Fuzzy relational algebra for possibility-distribution-fuzzy-relational model of fuzzy data. J. Intell. Inf. Syst. 3(1), 7–27 (1994)CrossRefGoogle Scholar
  48. 48.
    Wu, J.: Advances in K-means Clustering: A Data Mining Thinking. Springer Publishing Company, Incorporated, New York (2012)CrossRefzbMATHGoogle Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  50. 50.
    Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database design. Inf. Sci.-Appl. 1(3), 117–132 (1994)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of LITIOUniversité Oran 1 Ahmed Ben BellaOranAlgeria
  2. 2.CNRS, LIRIS, Université Claude Bernard Lyon 1University of LyonVilleurbanneFrance

Personalised recommendations