Distributed and Parallel Databases

, Volume 34, Issue 1, pp 65–99 | Cite as

SODA: A framework for spatial observation data analysis

  • Sebastián Villarroya
  • José R. R. Viqueira
  • Manuel A. Regueiro
  • José A. Taboada
  • José M. Cotos


Very large amounts of geospatial data are daily generated by many observation processes in different application domains. The amount of produced data is increasing due to the advances in the use of modern automatic sensing devices and also in the facilities available to promote crowdsourcing data collection initiatives. Spatial observation data includes both data of conventional entities and also samplings over multi-dimensional spaces. Existing observation data management solutions lack declarative specification of spatio-temporal analytics. On the other hand, current data management technologies miss observation data semantics and fail to integrate the management of entities and samplings in a single data modeling solution. The present paper presents the design of a framework that enables spatio-temporal declarative analysis over large warehouses of observation data. It integrates the management of entities and samplings within a simple data model based on the well known mathematical concept of function. Observation data semantics are incorporated into the model with appropriate metadata structures.


Spatial data Observation data Sensor data Data analysis  Data warehouse 



This work has been partially supported by the Spanish Ministry of Science and Innovation (TIN2010-21246-C02-02). The authors are also grateful to the reviewers, whose comments contributed to greatly improve the paper.


  1. 1.
    Cox, S.: Geographic Information—Observations and Measurements. Open Geospatial Consortium (OGC) Abstract Specification Topic 20 and ISO 19156:2011(E) (2013). Accessed Jan 2014
  2. 2.
    Open Geospatial Consortium (OGC): OpenGIS Sensor Model Language (SensorML) Implementation Specification (2007). Accessed Jan 2014
  3. 3.
    Bröring, A., Stasch, C., Echterhoff, J.: OGC Sensor Observation Service Interface Standard. Open Geospatial Consortium (OGC) (2012). Accessed Jan 2014
  4. 4.
    Bowers, S., Madin, J., Schildhauer, M.: A conceptual modeling framework for expressing observational data semantics. In: Q. Li, S. Spaccapietra, E. Yu, A. Oliv (eds.) Conceptual Modeling - ER 2008, Lecture Notes in Computer Science, vol. 5231, pp. 41–54. Springer, Berlin (2008). doi: 10.1007/978-3-540-87877-3_5
  5. 5.
    Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. 17(0), 25–32 (2012). doi: 10.1016/j.websem.2012.05.003
  6. 6.
    Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Ecol. Inf. 2(3), 279–296 (2007). Meta-information systems and ontologies. In: A Special Feature from the 5th International Conference on Ecological Informatics ISEI5, Santa Barbara, CA, Dec. 4–7, 2006—Novel Concepts of Ecological Data Management S.I. doi: 10.1016/ j.ecoinf.2007.05.004
  7. 7.
    Neteler, M., Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query processor for wireless sensor networks. Distrib. Parallel Databases 29(1–2), 31–85 (2011). doi: 10.1007/s10619-010-7074-3 CrossRefGoogle Scholar
  9. 9.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005). doi: 10.1145/1061318.1061322 CrossRefGoogle Scholar
  10. 10.
    Güting, R.H.: Spatial Databases. John Wiley, Hoboken (2001). doi: 10.1002/047134608X.W4317 Google Scholar
  11. 11.
    Lorentzos, N.A., Viqueira, J.R.R.: Relational formalism for the management of spatial data. Comput. J. 49(1), 62–81 (2006). doi: 10.1093/comjnl/bxh136
  12. 12.
    International Organization for Standardization (ISO): Information technology—Database languages—SQL multimedia and application packages—Part 3: Spatial. ISO/IEC 13249–3:2011 (2011)Google Scholar
  13. 13.
    Obe, R., Hsu, L.: PostGIS in Action. Manning, Stamford, CT (2011)Google Scholar
  14. 14.
    Mongodb: (2014). Accessed Jan 2014
  15. 15.
    Idreos, S., Groffen, F.E., Nes, N.J., Manegold, S., Mullender, K.S., Kersten, M.L.: MonetDB: Two decades of research in column-oriented database architectures. IEEE Data Eng. Bull. 35(1), 40–45 (2012). Accessed Jan 2014
  16. 16.
    Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional database system rasdaman. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of data, SIGMOD ’98, pp. 575–577. ACM, New York, NY (1998). doi: 10.1145/276304.276386
  17. 17.
    Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD ’10, pp. 963–968. ACM, New York, NY (2010). doi: 10.1145/1807167.1807271
  18. 18.
    Zhang, Y., Kersten, M.L., Manegold, S.: SciQL: array data processing inside an RDBMS. In: Proceedings of ACM SIGMOD International Conference on Management of Data 2013, pp. 1049–1052. ACM, New York, NY (2013). Accessed Jan 2014
  19. 19.
    Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). doi: 10.1145/2187671.2187677 CrossRefGoogle Scholar
  20. 20.
    Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006). doi: 10.1007/s00778-004-0147-z CrossRefGoogle Scholar
  21. 21.
    Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.: Towards a streaming sql standard. Proc. VLDB Endow. 1(2), 1379–1390 (2008). Accessed Jan 2014
  22. 22.
    Apache cassandra: (2014). Accessed Jan 2014
  23. 23.
    Voltdb: (2014). Accessed Jan 2014
  24. 24.
    Vertica: (2014). Accessed Jan 2014
  25. 25.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented dbms. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 553–564. VLDB Endowment (2005). Accessed Jan 2014
  26. 26.
    Schut, P.: OpenGIS Web Processing Service. Open Geospatial Consortium (OGC) (2007). Accessed Jan 2014
  27. 27.
    Cerveira Cordeiro, JaP, Câmara, G., Moura De Freitas, U., Almeida, F.: Yet another map algebra. Geoinformatica 13(2), 183–202 (2009). doi: 10.1007/s10707-008-0045-4 CrossRefGoogle Scholar
  28. 28.
    Date, C.J., Darwen, H., Darwen, H.: Temporal Data and the Relational Model: A Detailed Investigation into the Application of Interval and Relation Theory to the Problem of Temporal. Kaufmann series in data management systems, 1st edn. Morgan Kaufmann Publishers, Inc., San Francisco, CA (2002)Google Scholar
  29. 29.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Philip Drive Norwell, MA (1995)Google Scholar
  30. 30.
    Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Rec. 41(3), 34–43 (2012). doi: 10.1145/2380776.2380786 CrossRefGoogle Scholar
  31. 31.
    Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS’09, pp. 168–177. ACM, New York, NY (2009). doi: 10.1145/1653771.1653797
  32. 32.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000). doi: 10.1145/352958.352963 CrossRefGoogle Scholar
  33. 33.
    Viqueira, J., Lorentzos, N.: Sql extension for spatio-temporal data. VLDB J. 16(2), 179–200 (2007)CrossRefGoogle Scholar
  34. 34.
    Baumann, P., Holsten, S.: A comparative analysis of array models for databases. In: Kim, Th, Adeli, H., Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, Ki, Mariyam, S., Song, X. (eds.) Database Theory and Application, Bio-Science and Bio-Technology, Communications in Computer and Information Science, pp. 80–89. Springer, Berlin (2011). doi: 10.1007/978-3-642-27157-1_9
  35. 35.
    Gray, P.M.D.: The Functional Approach to Data Management: : Modeling, Analyzing, and Integrating Heterogeneous Data. Springer, Berlin (2004)CrossRefGoogle Scholar
  36. 36.
    Sagan, H.: Space-Filling Curves. Springer, Berlin (1994)MATHCrossRefGoogle Scholar
  37. 37.
    Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, pp. 671–682. ACM, New York, NY (2006). doi: 10.1145/1142473.1142548
  38. 38.
    Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined relational query engine. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD ’05, pp. 383–394. ACM, New York, NY (2005). doi: 10.1145/1066157.1066201
  39. 39.
    Abadi, D., Myers, D., DeWitt, D., Madden, S.: Materialization strategies in a column-oriented dbms. In: Proceedings of the IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 466–475 (2007). doi: 10.1109/ICDE.2007.367892

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sebastián Villarroya
    • 1
  • José R. R. Viqueira
    • 1
  • Manuel A. Regueiro
    • 1
  • José A. Taboada
    • 1
  • José M. Cotos
    • 1
  1. 1.Computer Graphics and Data Engineering Group (COGRADE), Centro Singular de Investigación en Tecnoloxías da Información (CITIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations