Distributed and Parallel Databases

, Volume 31, Issue 2, pp 115–149 | Cite as

Intelligent search in social communities of smartphone users

  • Andreas Konstantinidis
  • Demetrios Zeinalipour-Yazti
  • Panayiotis Andreou
  • George Samaras
  • Panos K. Chrysanthis


Social communities of smartphone users have recently gained significant interest due to their wide social penetration. The applications in this domain, however, currently rely on centralized or cloud-like architectures for data sharing and searching tasks, introducing both data-disclosure and performance concerns. In this paper, we present a distributed search architecture for intelligent search of objects in a mobile social community. Our framework, coined SmartOpt, is founded on an in-situ data storage model, where captured objects remain local on smartphones and searches then take place over an intelligent multi-objective lookup structure we compute dynamically. Our MO-QRT structure optimizes several conflicting objectives, using a multi-objective evolutionary algorithm that calculates a diverse set of high quality non-dominated solutions in a single run. Then a decision-making subsystem is utilized to tune the retrieval preferences of the query user. We assess our ideas both using trace-driven experiments with mobility and social patterns derived by Microsoft’s GeoLife project, DBLP and Pics ‘n’ Trails but also using our real Android SmartP2P (http://smartp2p.cs.ucy.ac.cy/) system deployed over our SmartLab (http://smartlab.cs.ucy.ac.cy/) testbed of 40+ smartphones. Our study reveals that SmartOpt yields high query recall rates of 95 %, with one order of magnitude less time and two orders of magnitude less energy than its competitors.


Intelligent search Peer to peer Evolutionary computation Multi-objective optimization Smartphones Social networks 



This work was supported in part by the second author’s Startup Grant, funded by the University of Cyprus, EU’s FP7 CONET project, EU’s FP6 Marie Curie TOK “SEARCHiN” project and EU’s FP7 “MODAP” projects and US NSF IIS-10503. We would like to thank Mr. Christos Aplitsiotis for helping out with the development of SmartP2P and its experimentation on SmartLab.


  1. 1.
    Allen, S.M., Colombo, G., Whitaker, R.M.: Cooperation through self-similar social networks. ACM Trans. Auton. Adapt. Syst. 5(1), 1–29 (2010) CrossRefGoogle Scholar
  2. 2.
    Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P., Samaras, G.: Optimized query routing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (2011) CrossRefGoogle Scholar
  3. 3.
    Andreou, P., Zeinalipour-Yazti, D., Chrysanthis, P.K., Samaras, G.: Power efficiency through tuple ranking in wireless sensor network monitoring. Distrib. Parallel Databases 29(1–2), 113–150 (2011) CrossRefGoogle Scholar
  4. 4.
    Andreou, P., Zeinalipour-Yazti, D., Pamboris, A., Chrysanthis, P.K., Samaras, G.: Optimized query routing trees for wireless sensor networks. Inf. Syst. 36(2), 267–291 (2011). doi: 10.1016/j.is.2010.06.001 CrossRefGoogle Scholar
  5. 5.
    Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone localization via ambience fingerprinting. In: MobiCom (2009) Google Scholar
  6. 6.
    Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In: EDBT, pp. 256–273 (2004) Google Scholar
  7. 7.
    Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R., Lu, H., Musolesi, M., Fodor, K., Ahn, G.: The rise of people-centric sensing. IEEE Internet Comput. 12(4), 12–21 (2008) CrossRefGoogle Scholar
  8. 8.
    Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-Yazti, D.: Crowdsourcing with smartphones. In: IEEE Internet Computing, IEEE Press, New York (2012) Google Scholar
  9. 9.
    Chen, S.K., Wang, P.C.: Design and implementation of an anycast services discovery in mobile ad hoc networks. ACM Trans. Auton. Adapt. Syst. 6(1), 2 (2011) CrossRefGoogle Scholar
  10. 10.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting: theory and optimization. In: Int. Inf. Sys. Conference, pp. 593–602. Springer, Berlin (2005) Google Scholar
  11. 11.
    Chun, B.N., Culler, D.E., Roscoe, T., Bavier, A.C., Peterson, L.L., Wawrzoniak, M., Bowman, M.: Planetlab: an overlay testbed for broad-coverage services. Comput. Commun. Rev. 33(3), 3–12 (2003) CrossRefGoogle Scholar
  12. 12.
    Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: Prism: platform for remote sensing using smartphones. In: MobiSys (2010) Google Scholar
  13. 13.
    DBLP: DBLP Computer Science Bibliography (2010). http://dblp.uni-trier.de/xml/
  14. 14.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2002) Google Scholar
  15. 15.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) CrossRefGoogle Scholar
  16. 16.
    Eisenman, S., Miluzzo, E., Lane, N., Peterson, R., Seop-Ahn, G., Campbell, A.: Bikenet: a mobile sensing system for cyclist experience mapping. ACM Trans. Sens. Netw. 6(1), 1–39 (2009) CrossRefGoogle Scholar
  17. 17.
    Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using a mobile sensor network for road surface monitoring. In: MobiSys, pp. 29–39 (2008) CrossRefGoogle Scholar
  18. 18.
    Gahng-Seop, A., Musolesi, M., Lu, H., Olfati-Saber, R., Campbell, A.: Metrotrack: predictive tracking of mobile events using mobile phones. In: DCOSS, pp. 230–243 (2010) Google Scholar
  19. 19.
    Gnutella: Gnutella peer-to-peer network (14 March 2000). http://gnutella.wego.com
  20. 20.
    Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), VLDB Endowment, pp. 229–240 (2005) Google Scholar
  21. 21.
    Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile lightweight devices in manets. In: Proc. of ICDE (2006) Google Scholar
  22. 22.
    Inamura, H., Montenegro, G., Ludwig, R., Gurtov, A., Khafizov, F.: TCP over second (2.5G) and third (3G) generation wireless networks. RFC 3481 (Best Current Practice) (Feb 2003). http://www.ietf.org/rfc/rfc3481.txt
  23. 23.
    Jia, J., Chen, J., Chang, G., Wen, Y., Song, J.: Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius. Comput. Math. Appl. 57(11–12), 1767–1775 (2009) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-peer networks. In: 11th International Conference on Information and Knowledge Management (CIKM’02), McLean, VA, USA, pp. 300–307 (2002) Google Scholar
  25. 25.
    Ko, Y.B., Vaidya, N.H.: Location-aided routing (lar) in mobile ad hoc networks. Wirel. Netw. 6(4), 307–321 (2000) MATHCrossRefGoogle Scholar
  26. 26.
    Konstantinidis, A., Aplitsiotis, C., Zeinalipour-Yazti, D.: SmartP2P: a multiobjective framework for finding social content in P2P smartphone networks. In: 13th International Conference on Mobile Data Management (MDM’12) (2012) Google Scholar
  27. 27.
    Konstantinidis, A., Costa, C., Larkou, G., Zeinalipour-Yazti, D., Demo: a programming cloud of smartphones. In: 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12), pp. 465–466 (2012) CrossRefGoogle Scholar
  28. 28.
    Konstantinidis, A., Yang, K.: Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Appl. Soft Comput. 11(6), 4117–4134 (2011) CrossRefGoogle Scholar
  29. 29.
    Konstantinidis, A., Yang, K., Zhang, Q., Zeinalipour-Yazti, D.: A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. New Netw. Paradig., Elsevier Comput. Netw. 54, 960–976 (2010) MATHCrossRefGoogle Scholar
  30. 30.
    Konstantinidis, A., Zeinalipour-Yazti, D., Andreou, P., Samaras, G.: Multi-objective query optimization in smartphone social networks. In: 12th International Conference in Mobile Data Management (2011) Google Scholar
  31. 31.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB, pp. 275–286 (2002) Google Scholar
  32. 32.
    Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: 16th International Conference on Supercomputing (ICS’02), New York, USA, pp. 84–95 (2002) CrossRefGoogle Scholar
  33. 33.
    Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: ICS, pp. 84–95 (2002) Google Scholar
  34. 34.
    Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: Peerdb: a p2p-based system for distributed data sharing. In: International Conference on Data Engineering, p. 633 (2003) Google Scholar
  35. 35.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03), pp. 467–478. ACM, New York (2003) CrossRefGoogle Scholar
  36. 36.
    Ra, M.R., Paek, J., Sharma, A., Govindan, R., Krieger, M.H., Neely, M.J.: Energy-delay tradeoffs in smartphone applications. In: MobiSys, pp. 255–270 (2010) Google Scholar
  37. 37.
    Rajagopalan, R., Mohan, C.K., Mehrotra, K.G., Varshney, P.K.: Emoca: an evolutionary multi-objective crowding algorithm. J. Intell. Syst. (2006) Google Scholar
  38. 38.
    Rajagopalan, R., Mohan, C.K., Varshney, P.K., Mehrotra, K.: Multi-objective mobile agent routing in wireless sensor networks. In: Proc. IEEE CEC’05, Edinburgh, Scotland, September 2005 Google Scholar
  39. 39.
    Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: IPSN, pp. 105–116 (2010) Google Scholar
  40. 40.
    Repantis, T., Kalogeraki, V.: Data dissemination in mobile peer-to-peer networks. In: 6th International Conference on Mobile Data Management (MDM’05), Ayia Napa, Cyprus, pp. 211–219 (2005) CrossRefGoogle Scholar
  41. 41.
    Sarigöl, E., Riva, P., Alonso, G.: A tuple space for social networking on mobile phones. In: ICDE (2010) Google Scholar
  42. 42.
    de Silva, G.C., Aizawa, K.: Retrieving multimedia travel stories using location data and spatial queries. In: The 17th ACM International Conference on Multimedia, pp. 785–788. ACM, New York (2009) Google Scholar
  43. 43.
    de Silva, G.C., Yamasaki, T., Aizawa, K.: Sketch-based spatial queries for retrieving human locomotion patterns from continuously archived gps data. IEEE Trans. Multimed. 11(7), 156–166 (2009) CrossRefGoogle Scholar
  44. 44.
    Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings of the 27th International Conference on Very Large Data Bases (VLDB’01), pp. 301–310. Morgan Kaufmann, San Francisco (2001) Google Scholar
  45. 45.
    Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: SenSys’09: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM, New York (2009) CrossRefGoogle Scholar
  46. 46.
    Tomiyasu, H., Maekawa, T., Hara, T., Nishio, S.: Profile-based query routing in a mobile social network. In: 7th International Conference on Mobile Data Management, May 2006, p. 105 (2006) CrossRefGoogle Scholar
  47. 47.
    Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks. In: Third International Conference on Peer-to-Peer Computing (P2P’03), 1–3 September 2003, pp. 102–109 (2003) CrossRefGoogle Scholar
  48. 48.
    Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Skypeer: efficient subspace skyline computation over distributed data. In: International Conference on Data Engineering, pp. 416–425 (2007) Google Scholar
  49. 49.
    Wang, S., Ooi, B.C., Tung, A.K.H.: Efficient skyline query processing on peer-to-peer networks. In: IEEE International Conference on Data Engineering (ICDE), pp. 1126–1135 (2007) Google Scholar
  50. 50.
    Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network testbed. In: Information Processing in Sensor Networks. Fourth International Symposium on IPSN 2005, pp. 483–488 (2005) Google Scholar
  51. 51.
    Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing skyline queries for scalable distribution. In: EDBT’06, pp. 112–130 (2006) Google Scholar
  52. 52.
    Xu, B., Wolfson, O., Naiman, C.: Machine learning in disruption-tolerant manets. ACM Trans. Auton. Adapt. Syst. 4(4), 23 (2009) CrossRefGoogle Scholar
  53. 53.
    Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Exploiting locality for scalable information retrieval in peer-to-peer systems. Inf. Syst. 30(4), 277–298 (2005) CrossRefGoogle Scholar
  54. 54.
    Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Pfusion: an architecture for internet-scale content-based search and retrieval. IEEE Trans. Parallel Distrib. Syst. 18(6), 804–817 (2007) CrossRefGoogle Scholar
  55. 55.
    Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In: Proceedings of the eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES/ISSS’10), pp. 105–114. ACM, New York (2010) CrossRefGoogle Scholar
  56. 56.
    Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007) CrossRefGoogle Scholar
  57. 57.
    Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw gps data for geographic applications on the web. In: WWW (2008) Google Scholar
  58. 58.
    Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption. IEEE Trans. Knowl. Data Eng. 21, 384–400 (2009) CrossRefGoogle Scholar
  59. 59.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study, pp. 292–301. Springer, Berlin (1998) Google Scholar
  60. 60.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andreas Konstantinidis
    • 1
  • Demetrios Zeinalipour-Yazti
    • 1
  • Panayiotis Andreou
    • 1
  • George Samaras
    • 1
  • Panos K. Chrysanthis
    • 2
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations