Advertisement

Distributed and Parallel Databases

, Volume 29, Issue 3, pp 217–238 | Cite as

Irregularity in high-dimensional space-filling curves

  • Mohamed F. Mokbel
  • Walid G. Aref
Article

Abstract

A space-filling curve is a way of mapping the discrete multi-dimensional space into the one-dimensional space. It acts like a thread that passes through every cell element (or pixel) in the discrete multi-dimensional space so that every cell is visited exactly once. Thus, a space-filling curve imposes a linear order of the cells in the multi-dimensional space. There are numerous kinds of space-filling curves. The difference between such curves is in their way of mapping to the one-dimensional space. Selecting the appropriate curve for any application requires knowledge of the mapping scheme provided by each space-filling curve. Irregularity is proposed as a quantitative measure for the ordering quality imposed by space-filling curve mapping. The lower the irregularity the better the space-filling curve in preserving the order of the discrete multi-dimensional space. Five space-filling curves (the Sweep, Scan, Peano, Gray, and Hilbert) are analyzed with respect to irregularity. Closed formulas are developed to compute the irregularity in any dimension k for a D-dimensional space-filling curve with grid size N. A comparative study of different space-filling curves with respect to the irregularity is conducted and results are presented and discussed. We find out that for an application that is biased toward one of the dimensions, the Sweep or the Scan space-filling curves are the best choice. For high-dimensional applications, the Peano space-filling curve would be the best choice. For applications that require fairness among various dimensions, the Hilbert and Gray space-filling curves are the best choice.

Keywords

Space-filling curves Fractals Irregularity High-dimensional space Performance analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, D.J., Mark, D.M.: A comparative analysis of some two-dimensional orderings. Int. J. Geogr. Inf. Syst. 4(1), 21–31 (1990) CrossRefGoogle Scholar
  2. 2.
    Abel, D.J., Smith, J.: A data structure and algorithm based on a linear key for a rectangle retrieval problem. Comput. Vis. Graph. Image Process. 24, 1–13 (1983) CrossRefGoogle Scholar
  3. 3.
    Alber, J., Niedermeier, R.: On multi-dimensional Hilbert indexing. In: International Computing and Combinatorics Conference, COCOON, Aug. 1998, pp. 329–338 (1998) Google Scholar
  4. 4.
    Aref, W.G., Kamel, I.: On multi-dimensional sorting orders. In: Proc. of the International Conference on Database and Expert Systems Applications, DEXA, Sept. 2000, pp. 774–783 (2000) Google Scholar
  5. 5.
    Aref, W.G., El-Bassyouni, K., Kamel, I., Mokbel, M.F.: Scalable QoS-aware disk-scheduling. In: International Database Engineering and Applications Symposium, IDEAS, July 2002 Google Scholar
  6. 6.
    Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-filling curves and their use in the design of geometric data structures. Theor. Comput. Sci. 181(1), 3–15 (1997) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bartholdi, J.J., Platzman, L.K.: An O(n log n) traveling salesman heuristic based on space filling curves. Oper. Res. Lett. 1(4), 121–125 (1982) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bially, T.: Space-filling curves: their generation and their application to bandwidth reduction. IEEE Trans. Inf. Theory 15(6), 658–664 (1969) CrossRefGoogle Scholar
  9. 9.
    Bohm, C., Klump, G., Kriegel, H.-P.: XZ-Ordering: a space-filling curve for objects with spatial extension. In: Proceedings of the International Symposium on Advances in Spatial Databases, SSD, July 1999, pp. 75–90 (1999) Google Scholar
  10. 10.
    Breinholt, G., Schierz, C.: Algorithm 781: generating Hilbert’s space-filling curve by recursion. ACM Trans. Math. Softw. 24(2), 184–189 (1998) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using R-trees. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, May 1993, pp. 237–246 (1993) Google Scholar
  12. 12.
    Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: ST2B-tree: a self-tunable spatio-temporal B+-tree index for moving objects. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 2008, pp. 29–42 (2008) Google Scholar
  13. 13.
    Cole, A.J.: A note on space filling curves. Softw. Pract. Exp. 13(12), 1181–1189 (1983) CrossRefGoogle Scholar
  14. 14.
    Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979) CrossRefMATHGoogle Scholar
  15. 15.
    Faloutsos, C.: Gray codes for partial match and range queries. IEEE Trans. Softw. Eng. 14(10), 1381–1393 (1988) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Faloutsos, C., Bhagwat, P.: Declustering using fractals. In: Proceedings of the International Conference on Parallel and Distributed Information Systems, Jan. 1993, pp. 18–25 (1993) CrossRefGoogle Scholar
  17. 17.
    Faloutsos, C., Rong, Y.: DOT: a spatial access method using fractals. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, pp. 152–159 (1991) Google Scholar
  18. 18.
    Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval. In: Proceedings of the ACM Symposium on Principles of Database Systems, PODS, pp. 247–252 (1989) Google Scholar
  19. 19.
    Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta Inform. 4, 1–9 (1974) CrossRefMATHGoogle Scholar
  20. 20.
    Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private queries in location-based services: anonymizers are not necessary. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 2008, pp. 121–132 (2008) Google Scholar
  21. 21.
    Goldschlager, L.M.: Short algorithms for space-filling curves. Softw. Pract. Exp. 11(1), 99–100 (1981) CrossRefGoogle Scholar
  22. 22.
    Gray, F.: Pulse code communications. US Patent 2632058 (1953) Google Scholar
  23. 23.
    Hilbert, D.: Ueber stetige abbildung einer linie auf ein flashenstuck. Math. Ann. 459–460 (1891) Google Scholar
  24. 24.
    Jagadish, H.V.: Linear clustering of objects with multiple attributes. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, June 1990, pp. 332–342 (1990) Google Scholar
  25. 25.
    Jensen, C.S., Tiesyte, D., Tradisauskas, N.: Robust B+-tree-based indexing of moving objects. In: Proceedings of the IEEE International Conference on Mobile Data Management, MDM, May 2006 Google Scholar
  26. 26.
    Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based identity inference in anonymous spatial queries. IEEE Trans. Knowl. Data Eng. 19(12), 1719–1733 (2007) CrossRefGoogle Scholar
  27. 27.
    Kamel, I., Faloutsos, C.: On packing R-trees. In: Proceedings of the ACM International Conference on Information and Knowledge Managemen, CIKM, Nov. 1993, pp. 490–499 (1993) CrossRefGoogle Scholar
  28. 28.
    Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree using fractals. In: Proceedings of the International Conference on Very Large Data Bases, VLDB, Sept. 1994, pp. 500–509 (1994) Google Scholar
  29. 29.
    Lawder, J.K., King, P.J.H.: Using space-filling curves for multi-dimensional indexing. In: Proceedings of the 17th British National Conference on Databases, BNCOD, July 2000, pp. 20–35 (2000) Google Scholar
  30. 30.
    Liao, S., Lopez, M.A., Leutenegger, S.: High dimensional similarity search with space-filling curves. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Apr. 2001, pp. 615–622 (2001) CrossRefGoogle Scholar
  31. 31.
    Mokbel, M.F., Aref, W.G.: Irregularity in multi-dimensional space-filling curves with applications in multimedia databases. In: Proceedings of the ACM International Conference on Information and Knowledge Managemen, CIKM, Nov. 2001, pp. 512–519 (2001) Google Scholar
  32. 32.
    Mokbel, M.F., Aref, W.G.: On query processing and optimality using spectral locality-preserving mappings. In: Proceedings of the International Symposium on Advances in Spatial and Temporal Databases, SSTD, July 2003 Google Scholar
  33. 33.
    Mokbel, M.F., Aref, W.G., Kamel, I.: Performance of multi-dimensional space-filling curves. In: Proceedings of the ACM Symposium on Advances in Geographic Information Systems, ACM GIS, Nov. 2002 Google Scholar
  34. 34.
    Mokbel, M.F., Aref, W.G., Grama, A.: Spectral LPM: an optimal locality-preserving mapping using the spectral (not fractal) order. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Mar. 2003 Google Scholar
  35. 35.
    Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling curves. GeoInformatica 7(3), 179–209 (2003) CrossRefGoogle Scholar
  36. 36.
    Mokbel, M.F., Aref, W.G., Elbassioni, K.M., Kamel, I.: Scalable multimedia disk scheduling. In: Proceedings of the IEEE International Conference on Data Engineering, ICDE, Mar. 2004 Google Scholar
  37. 37.
    Moon, B., Jagadish, H., Faloutsos, C., Salz, J.: Analysis of the clustering properties of Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001) CrossRefGoogle Scholar
  38. 38.
    Moore, E.H.: On certain crinkly curves. Trans. Am. Math. Soc. 72–90 (1900) Google Scholar
  39. 39.
    Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequences. IBM (1966) Google Scholar
  40. 40.
    Orenstein, J.A.: Spatial query processing in an object-oriented database system. In: Proceedings of the ACM International Conference on Management of Data, SIGMOD, May 1986, pp. 326–336 (1986) Google Scholar
  41. 41.
    Orenstein, J.A., Merrett, T.: A class of data structures for associative searching. In: Proceedings of the ACM Symposium on Principles of Database Systems, PODS, Apr. 1984, pp. 181–190 (1984) CrossRefGoogle Scholar
  42. 42.
    Patrick, E.A., Anderson, D.R., Bechtel, F.K.: Mapping multidimensional space to one dimension for computer output display. IEEE Trans. Comput. 17(10), 949–953 (1968) CrossRefMATHGoogle Scholar
  43. 43.
    Peano, G.: Sur une courbe qui remplit toute une air plaine. Math. Ann. 36, 157–160 (1890) CrossRefMathSciNetGoogle Scholar
  44. 44.
    Sevcik, K.C., Koudas, N.: Filter trees for managing spatial data over a range of size granularities. In: Proceedings of the International Conference on Very Large Data Bases, VLDB, Sept. 1996, pp. 16–27 (1996) Google Scholar
  45. 45.
    Shepherd, J., Zhu, X., Megiddo, N.: A fast indexing method for multidimensional nearest neighbor search. SPIE, Storage Retr. Image Video Databases 3656, 350–355 (1998) Google Scholar
  46. 46.
    Thottethodi, M., Chatterjee, S., Lebeck, A.: Tuning Strassen matrix multiplication algorithm for memory efficiency. In: Proceedings High Performance Computing ad Networking, SC, Nov. 1998 Google Scholar
  47. 47.
    Tropf, H., Herzog, H.: Multidimensional range search in dynamically balanced trees. Angew. Inform., 71–77 (1981) Google Scholar
  48. 48.
    Velho, L., Gomes, J.: Stochastic screening dithering with adaptive clustering. In: Proceedings of the ACM Conference on Computer Graphics, pp. 273–276 (1995) Google Scholar
  49. 49.
    White, M.: N-Trees: Large ordered indexes for multi-dimensional space. Statistical research division. US Bureau of the Census (1980) Google Scholar
  50. 50.
    Witten, I.H., Neal, M.: Using Peano curves for bilevel display of continuous tone images. IEEE Comput. Graph. Appl., 47–52 (1982) Google Scholar
  51. 51.
    Witten, I.H., Wyvill, B.: On the generation and use of space-filling curves. Softw. Pract. Exp. 3, 519–525 (1983) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations