Skip to main content

Advertisement

Log in

Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hypoxia plays an important role in tumor phenotype and progression and alters glycolysis, with changes in signaling pathways that develop in response to hypoxia. In this study, the effects of oxygen (normoxia/hypoxia) and of glucose levels on the glucose metabolism was investigated in MCF-7 cancer cells. Under either normoxia or hypoxia conditions, the cells were exposed to glucose at different concentrations (0, 5.5, 15 or 55 mM) for either 3, 6, 12, 24 or 48 h. In all groups, cell viability, levels of key enzymes reflecting glycolytic metabolism in cell lysates, glucose consumed in the medium and extracellular lactate levels and wound closure percentages were determined. In hypoxic cells, intracellular consumption of glucose, and extracellular lactate levels due to increased glucose concentration were observed to be higher (compared to normoxia) and as a result of prolonged exposure to hypoxia, cells were observed to develop resistance to the prolonged exposure to hypoxia. The number of glycolytic enzymes obtained at different levels proved that cells had different potential capacities and changing mechanisms for the metabolic needs of the cell depending on the glucose amount in the medium and time in adapting to the oxygen tension. This study showed that there was an important interaction between hypoxia and glucose metabolism in general, and it was concluded that metabolic processes activated by hypoxia could offer new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Augoff K, Hryniewicz-Jankowska A (2015) Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett 358(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, Liang W, Tivett A, Zhou M, Wang JM (2019) High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl Oncol 12:1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenergy Biomembr 39:223–229

    Article  CAS  Google Scholar 

  • Blount KG (2013) Cancer systems biology: is the devil in the glycolytic detail? Dissertion, University of Manchester School of Chemical Engineering and Analytical Sciences, Manchester

  • Bristow RG, Hill RP (2008) Hipoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    Article  CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N, Asara JM, Centley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186

    Article  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bacha T, de Freitas MS, Sola-Penna M (2003) Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab 79:294–299

    Article  CAS  PubMed  Google Scholar 

  • Faloppi L, Bianconi M, Memeo R, Casadei Gardini A, Giampieri R, Bittoni A, Andrikou K, Del Prete M, Cascinu S, Scartozzi M (2016) Lactate dehydrogenase in hepatocellular carcinoma: something old, something new. BioMed Res Int 2016:7196280

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K (2007) Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 109(9):3812–3819

    Article  CAS  PubMed  Google Scholar 

  • Fritz V, Fajas L (2010) Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 29:4369–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Mejías R, Echevarría M, López-Barneo J (2004) Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Lett 569:256–260

    Article  CAS  PubMed  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  CAS  PubMed  Google Scholar 

  • Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, Dusetti NJ, Loncle C, Calvo E, Turrini O, Lovanna JL, Tomasini R, Vasseur S (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110:3919–3924

    Article  CAS  PubMed  Google Scholar 

  • Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E (2011) High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 6:e27074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, Sheng X, Zhou C, Bae-Jump VL (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol 138:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Herling A, König M, Bulik S, Holzhütter HG (2011) Enzymatic features of the glucose metabolism in tumor cells. FEBS J 278:2436–2459

    Article  CAS  PubMed  Google Scholar 

  • Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes & Dis 4(1):25–27

    Article  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu H, Xing R, Pan Y, Li W, Cui J, Lu Y (2019) Pyruvate kinase M2 contributes to cell growth in gastric cancer via aerobic glycolysis. Pathol Res Pract 215:152409

    Article  CAS  PubMed  Google Scholar 

  • Lincet H, Icard P (2015) How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 34:3751–3759

    Article  CAS  PubMed  Google Scholar 

  • Lis P, Dyląg M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S (2016) The HK2 dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 15:21

    Google Scholar 

  • Liu T, Yin H (2017) PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncol Rep 37:193–200

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J, Wang F (2013) Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol Ther 14:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: Mitochondrial oxidativemetabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    Article  CAS  PubMed  Google Scholar 

  • Marín-Hernández A, Gallardo-Perez JC, Ralph SJ, Rodríguez- Enríquez S, Moreno-Sánchez R (2009) HIF-1 alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101

    Article  PubMed  Google Scholar 

  • Marín-Hernández Á, Gallardo-Pérez JC, Hernández-Reséndiz I, Del Mazo-Monsalvo I, Robledo-Cadena DX, Moreno-Sánchez R, Rodríguez-Enríquez S (2016) Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic hela cell cultures and microspheroids. J Cell Physiol 232:1346–1359

    Article  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  CAS  PubMed  Google Scholar 

  • Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattigan YI, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod JW, Banerjee D (2012) Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 318:326–335

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Enríquez S, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, Vega A, Marín-Hernández A, Olín-Sandavol V, Torres-Márquez ME, Moreno-Sánchez R (2010) Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol 42:1744–1751

    Article  PubMed  Google Scholar 

  • Ruddon RW (2007) Cancer biology, 4th edn. Oxford University Press, Oxford, p 4

    Google Scholar 

  • Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenergy Biomembr 39:231–234

    Article  CAS  Google Scholar 

  • Shuch B, Linehan WM, Srinivasan R (2013) Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther 13:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S, Zwerschke W (2009) Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res 315:2765–2774

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran AQ, Han J, Zhang L, Guo H, Madugu E, Pan T (2017) Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget 8(38):63551–63561

    Article  PubMed  PubMed Central  Google Scholar 

  • Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Meta Rev 26(2):299–310

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahdan-Alaswad R, Fan Z, Edgerton SM, Liu B, Deng XS, Arnadottir SS, Richer JK, Anderson SM, Thor AD (2013) Glucose promotes breast cancer aggression and reduces metformin efficacy. Cell Cycle 12:3759–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, Sun S (2013) Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett 6:1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, He Q, Yan W, Sun J, Chen Z, Liu Z, Lu Z, Hou J, Shao Y, Zhou X, Wang A (2017) High glucose enhances the metastatic potential of tongue squamous cell carcinoma via the PKM2 pathway. Oncotarget 8(67):111770–111779

    Article  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigerup C, Páhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 164:152–169

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Li W, Zhu S, Li J, Wu J, Li X, Chen C, Wei W, Sun S, Wang C (2016) High glucose induced human breast cancer cell MCF-7 viability, migration and invasion via the expression of AKT, MAPKs and STAT3. Int J Clin Exp Med 9:11260–11267

    CAS  Google Scholar 

  • Zhu S, Yao F, Li WH, Wan JN, Zhang YM, Tang Z, Khan S, Wang CH, Sun SR (2013) PKCδ-dependent activation of the ubiquitin proteasome system is responsible for high glucose-induced human breast cancer MCF-7 cell proliferation, migration and invasion. Asian Pac J Cancer Prev 14(10):5687–5692

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İrem Bayar.

Ethics declarations

Conflict of interest

There is no conflict of interest between authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Research involving animal rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayar, İ., Bildik, A. Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture. Cytotechnology 73, 217–232 (2021). https://doi.org/10.1007/s10616-021-00459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-021-00459-2

Keywords

Navigation