Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture

Abstract

Hypoxia plays an important role in tumor phenotype and progression and alters glycolysis, with changes in signaling pathways that develop in response to hypoxia. In this study, the effects of oxygen (normoxia/hypoxia) and of glucose levels on the glucose metabolism was investigated in MCF-7 cancer cells. Under either normoxia or hypoxia conditions, the cells were exposed to glucose at different concentrations (0, 5.5, 15 or 55 mM) for either 3, 6, 12, 24 or 48 h. In all groups, cell viability, levels of key enzymes reflecting glycolytic metabolism in cell lysates, glucose consumed in the medium and extracellular lactate levels and wound closure percentages were determined. In hypoxic cells, intracellular consumption of glucose, and extracellular lactate levels due to increased glucose concentration were observed to be higher (compared to normoxia) and as a result of prolonged exposure to hypoxia, cells were observed to develop resistance to the prolonged exposure to hypoxia. The number of glycolytic enzymes obtained at different levels proved that cells had different potential capacities and changing mechanisms for the metabolic needs of the cell depending on the glucose amount in the medium and time in adapting to the oxygen tension. This study showed that there was an important interaction between hypoxia and glucose metabolism in general, and it was concluded that metabolic processes activated by hypoxia could offer new therapeutic targets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Augoff K, Hryniewicz-Jankowska A (2015) Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett 358(1):1–7

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, Liang W, Tivett A, Zhou M, Wang JM (2019) High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl Oncol 12:1155–1163

    PubMed  PubMed Central  Article  Google Scholar 

  3. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenergy Biomembr 39:223–229

    CAS  Article  Google Scholar 

  4. Blount KG (2013) Cancer systems biology: is the devil in the glycolytic detail? Dissertion, University of Manchester School of Chemical Engineering and Analytical Sciences, Manchester

  5. Bristow RG, Hill RP (2008) Hipoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Centley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. El-Bacha T, de Freitas MS, Sola-Penna M (2003) Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol Genet Metab 79:294–299

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Faloppi L, Bianconi M, Memeo R, Casadei Gardini A, Giampieri R, Bittoni A, Andrikou K, Del Prete M, Cascinu S, Scartozzi M (2016) Lactate dehydrogenase in hepatocellular carcinoma: something old, something new. BioMed Res Int 2016:7196280

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K (2007) Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 109(9):3812–3819

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Fritz V, Fajas L (2010) Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 29:4369–4377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Gao L, Mejías R, Echevarría M, López-Barneo J (2004) Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Lett 569:256–260

    CAS  PubMed  Article  Google Scholar 

  13. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    CAS  PubMed  Article  Google Scholar 

  14. Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, Dusetti NJ, Loncle C, Calvo E, Turrini O, Lovanna JL, Tomasini R, Vasseur S (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110:3919–3924

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E (2011) High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 6:e27074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Han J, Zhang L, Guo H, Wysham WZ, Roque DR, Willson AK, Sheng X, Zhou C, Bae-Jump VL (2015) Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol 138:668–675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Article  Google Scholar 

  18. Herling A, König M, Bulik S, Holzhütter HG (2011) Enzymatic features of the glucose metabolism in tumor cells. FEBS J 278:2436–2459

    CAS  PubMed  Article  Google Scholar 

  19. Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes & Dis 4(1):25–27

    Article  Google Scholar 

  20. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Li H, Xu H, Xing R, Pan Y, Li W, Cui J, Lu Y (2019) Pyruvate kinase M2 contributes to cell growth in gastric cancer via aerobic glycolysis. Pathol Res Pract 215:152409

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Lincet H, Icard P (2015) How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 34:3751–3759

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Lis P, Dyląg M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S (2016) The HK2 dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 15:21

    Google Scholar 

  25. Liu T, Yin H (2017) PDK1 promotes tumor cell proliferation and migration by enhancing the Warburg effect in non-small cell lung cancer. Oncol Rep 37:193–200

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Liu Z, Jia X, Duan Y, Xiao H, Sundqvist KG, Permert J, Wang F (2013) Excess glucose induces hypoxia-inducible factor-1α in pancreatic cancer cells and stimulates glucose metabolism and cell migration. Cancer Biol Ther 14:428–435

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: Mitochondrial oxidativemetabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Marín-Hernández A, Gallardo-Perez JC, Ralph SJ, Rodríguez- Enríquez S, Moreno-Sánchez R (2009) HIF-1 alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101

    PubMed  Article  PubMed Central  Google Scholar 

  29. Marín-Hernández Á, Gallardo-Pérez JC, Hernández-Reséndiz I, Del Mazo-Monsalvo I, Robledo-Cadena DX, Moreno-Sánchez R, Rodríguez-Enríquez S (2016) Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic hela cell cultures and microspheroids. J Cell Physiol 232:1346–1359

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  30. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Rattigan YI, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod JW, Banerjee D (2012) Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 318:326–335

    CAS  PubMed  Article  Google Scholar 

  33. Rodríguez-Enríquez S, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, Vega A, Marín-Hernández A, Olín-Sandavol V, Torres-Márquez ME, Moreno-Sánchez R (2010) Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol 42:1744–1751

    PubMed  Article  CAS  Google Scholar 

  34. Ruddon RW (2007) Cancer biology, 4th edn. Oxford University Press, Oxford, p 4

    Google Scholar 

  35. Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenergy Biomembr 39:231–234

    CAS  Article  Google Scholar 

  36. Shuch B, Linehan WM, Srinivasan R (2013) Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther 13:711–719

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S, Zwerschke W (2009) Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res 315:2765–2774

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran AQ, Han J, Zhang L, Guo H, Madugu E, Pan T (2017) Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget 8(38):63551–63561

    PubMed  PubMed Central  Article  Google Scholar 

  39. Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Meta Rev 26(2):299–310

    CAS  Article  Google Scholar 

  40. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Wahdan-Alaswad R, Fan Z, Edgerton SM, Liu B, Deng XS, Arnadottir SS, Richer JK, Anderson SM, Thor AD (2013) Glucose promotes breast cancer aggression and reduces metformin efficacy. Cell Cycle 12:3759–3769

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Wang G, Xu Z, Wang C, Yao F, Li J, Chen C, Sun S (2013) Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues. Oncol Lett 6:1701–1706

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Wang W, He Q, Yan W, Sun J, Chen Z, Liu Z, Lu Z, Hou J, Shao Y, Zhou X, Wang A (2017) High glucose enhances the metastatic potential of tongue squamous cell carcinoma via the PKM2 pathway. Oncotarget 8(67):111770–111779

    PubMed  PubMed Central  Article  Google Scholar 

  44. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Wigerup C, Páhlman S, Bexell D (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 164:152–169

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Wu Q, Li W, Zhu S, Li J, Wu J, Li X, Chen C, Wei W, Sun S, Wang C (2016) High glucose induced human breast cancer cell MCF-7 viability, migration and invasion via the expression of AKT, MAPKs and STAT3. Int J Clin Exp Med 9:11260–11267

    CAS  Google Scholar 

  48. Zhu S, Yao F, Li WH, Wan JN, Zhang YM, Tang Z, Khan S, Wang CH, Sun SR (2013) PKCδ-dependent activation of the ubiquitin proteasome system is responsible for high glucose-induced human breast cancer MCF-7 cell proliferation, migration and invasion. Asian Pac J Cancer Prev 14(10):5687–5692

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to İrem Bayar.

Ethics declarations

Conflict of interest

There is no conflict of interest between authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Research involving animal rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayar, İ., Bildik, A. Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture. Cytotechnology (2021). https://doi.org/10.1007/s10616-021-00459-2

Download citation

Keywords

  • Glycolysis enzymes
  • Glucose
  • Hypoxia
  • MCF-7
  • Normoxia