Skip to main content
Log in

Class A scavenger receptor expression and function in eight novel tadpole cell lines from the green frog (Lithobates clamitans) and the wood frog (Lithobates sylvatica)

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

A total of eight tadpole cell lines were established from green frogs (Lithobates clamitans) and wood frogs (Lithobates sylvatica). The five green frog cell lines were named GreenTad-HF1, GreenTad-HF2, GreenTad-HF3, GreenTad-HE4, and GreenTad-gill. The three wood frog cell lines were named WoodTad-HE1, WoodTad-Bone, and WoodTad-rpe. DNA barcoding confirmed the cell lines to be from the correct species and the growth characteristics (optimal temperature and FBS requirement) were elucidated. In order to begin studying the innate immune capacity for each cell line, class A scavenger receptor expression and function were next explored. All cell lines expressed genes for at least 3 of the 5 class A scavenger receptor (SR-A) family members, but the gene expression patterns varied between cell lines. MARCO was only expressed in GreenTad-HE4 and WoodTad-Bone, while only GreenTad-HF3 did not express SCARA5 and only WoodTad-rpe did not express SR-AI. Acetylated low density lipoprotein (AcLDL) is a well-defined ligand for SR-As and WoodTad-rpe was the only cell line to which it was unable to bind. In the other seven tadpole cell lines, the SR-A competitive ligands (dextran sulfate, fucoidan, polyinosinic acid) blocked AcLDL binding whereas the SR-A non-competitive ligand counterparts (chondroitin sulfate, fetuin, polycytidylic acid, respectively) did not. Overall, these new eight cell lines can become important tools in the study of innate immunity in general and SR-A functions in particular in green frogs and wood frogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acton S, Resnick D, Freeman M, Ekkel Y, Ashkenas J, Krieger M (1993) The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J Biol Chem 268:3530

    CAS  PubMed  Google Scholar 

  • Baid K, Nellimarla S, Huynh A, Boulton S, Guarné A, Melacini G, Collins SE, Mossman KL (2018) Direct binding and internalization of diverse extracellular nucleic acid species through the collagenous domain of class A scavenger receptors. Immunol Cell Biol 96:922–934

    Article  CAS  PubMed  Google Scholar 

  • Bols NC, Pham PH, Dayeh VR, Lee LEJ (2017) Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. Vitro Cell Dev Biol Anim 53:383–405

    Article  CAS  Google Scholar 

  • Bowdish DM, Gordon S (2009) Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 227:19–31

    Article  CAS  PubMed  Google Scholar 

  • Catenazzi A (2015) State of the world’s amphibians. Annu Rev Environ Resour 40:91–119

    Article  Google Scholar 

  • Chinchar VG (2002) Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol 147:447–470

    Article  CAS  PubMed  Google Scholar 

  • Cooper JK, Sykes G, King S, Cottrill K, Ivanova NV, Hanner R, Ikonomi P (2007) Species identification in cell culture: a two-pronged molecular approach. Vitro Cell Dev Biol Anim 43:344–351

    Article  CAS  Google Scholar 

  • Dansako H, Yamane D, Welsch C, McGivern DR, Hu F, Kato N, Lemon SM (2013) Class A scavenger receptor 1 (MSR1) restricts hepatitis C virus replication by mediating toll-like receptor 3 recognition of viral RNAs produced in neighboring cells. PLoS Pathog 9:e1003345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Densmore CL, Green DE (2007) Diseases of amphibians. ILAR J 48:235–254

    Article  CAS  Google Scholar 

  • DeWitte-Orr SJ, Leong JAC, Bols NC (2007) Induction of antiviral genes, Mx and vig-1, by dsRNA and Chum salmon reovirus in rainbow trout monocyte/macrophage and fibroblast cell lines. Fish Shellfish Immunol 23(3):670–682

    Article  CAS  PubMed  Google Scholar 

  • DeWitte-Orr SJ, Collins SE, Bauer CM, Bowdish DM, Mossman KL (2010) An accessory to the ‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog 6:e1000829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieudonne A, Torres D, Blanchard S, Taront S, Jeannin P, Delneste Y, Pichavant M, Trottein F, Gosset P (2012) Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA. PLoS ONE 7:e41952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi T, Higashino K, Kurihara Y, Wada Y, Miyazaki T, Nakamura H, Uesugi S, Imanishi T, Kawabe Y, Itakura H (1993) Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J Biol Chem 268:2126–2133

    CAS  PubMed  Google Scholar 

  • Fukuda M, Ohtani K, Jang SJ, Yoshizaki T, Mori K, Motomura W, Yoshida I, Suzuki Y, Kohgo Y, Wakamiya N (2011) Molecular cloning and functional analysis of scavenger receptor zebrafish CL-P1. Biochim Biophys Acta 1810:1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Ho Y, Basu S, Brown M (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76:333

    Article  CAS  PubMed  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16(3):183–190

    Google Scholar 

  • Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI (2018) Review of the amphibian immune response to chytridiomycosis, and future directions. Front Immunol 9:2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han HJ, Tokino T, Nakamura Y (1998) CSR, a scavenger receptor-like protein with a protective role against cellular damage causedby UV irradiation and oxidative stress. Hum Mol Genet 7:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Oliver P, Davies KE, Platt N (2006) Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 281:11834–11845

    Article  CAS  PubMed  Google Scholar 

  • Kraal G, van der Laan L, Elomaa O, Tryggvason K (2000) The macrophage receptor MARCO. Microbes Infect 2:313–316. https://doi.org/10.1016/S1286-4579(00)00296-3

    Article  CAS  PubMed  Google Scholar 

  • Krieger M (1997) The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 8:275–280

    Article  CAS  PubMed  Google Scholar 

  • MacLeod DT, Nakatsuji T, Yamasaki K, Kobzik L, Gallo RL (2013) HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection. Nat Commun 4:1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2005) Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182:1–15

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Funakoshi H, Miyamoto K, Tokunaga F, Nakamura T (2001) Molecular cloning and functional characterization of a human scavenger receptor with C-type lectin (SRCL), a novel member of a scavenger receptor family. Biochem Biophys Res Commun 280:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H, Sakai Y, Fukuoh A, Sakamoto T, Itabe H, Suzutani T, Ogasawara M, Yoshida I, Wakamiya N (2001) The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem 276:44222–44228

    Article  CAS  PubMed  Google Scholar 

  • Poynter SJ, Weleff J, Soares AB, DeWitte-Orr SJ (2015) Class-A scavenger receptor function and expression in the rainbow trout (Oncorhynchus mykiss) epithelial cell lines RTgutGC and RTgill-W1. Fish Shellfish Immunol 44:138–146

    Article  CAS  PubMed  Google Scholar 

  • Poynter SJ, Monjo AL, DeWitte-Orr SJ (2018) Identification of three class A scavenger receptors from rainbow trout (Oncorhynchus mykiss): SCARA3, SCARA4, and SCARA5. Fish Shellfish Immunol 76:121–125

    Article  CAS  PubMed  Google Scholar 

  • Rafferty KA Jr (1969) Mass culture of amphibian cells: methods and observations concerning stability of cell type. In: Mizell M (ed) Biology of amphibian tumors. Springer, Berlin, pp 52–81

    Chapter  Google Scholar 

  • Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296

    Article  CAS  PubMed  Google Scholar 

  • Vo NTK, Bender AW, Ammendolia DA, Lumsden JS, Dixon B, Bols NC (2015a) Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA. Fish Shellfish Immunol 45:83–93

    Article  CAS  PubMed  Google Scholar 

  • Vo NTK, Bender AW, Lee LEJ, Lumsden JS, Lorenzen N, Dixon B, Bols NC (2015b) Development of a walleye cell line and use to study the effects of temperature on infection by viral hemorrhagic septicaemia virus (VHSV) group IVb. J Fish Dis 38:121–136

    Article  CAS  PubMed  Google Scholar 

  • Vo NTK, Guerreiro M, Yaparla A, Grayfer L, DeWitte-Orr SJ (2019a) Class A scavenger receptors are used by frog virus 3 during its cellular entry. Viruses 11(2):E93. https://doi.org/10.3390/v11020093

    Article  PubMed  Google Scholar 

  • Vo NTK, Moore LC, Leis E, DeWitte-Orr SJ (2019b) Class A scavenger receptors mediate extracellular dsRNA sensing, leading to downstream antiviral gene expression in a novel American toad cell line, BufoTad. Dev Comp Immunol 92:140–149

    Article  CAS  PubMed  Google Scholar 

  • Whelan FJ, Meehan CJ, Golding GB, McConkey BJ, Bowdish DM (2012) The evolution of the class A scavenger receptors. BMC Evol Biol 12:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright K (2003) Cholesterol, corneal lipidosis, and xanthomatosis in amphibians. Vet Clin N Am Exot Anim Pract 6:155–167

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada in the form of a Discovery grant and the Ontario Ministry of Research, Innovation and Science (MRIS)’s Early Researcher Award (ERA) grant to SDO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. DeWitte-Orr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, N.T.K., Everson, J., Moore, L. et al. Class A scavenger receptor expression and function in eight novel tadpole cell lines from the green frog (Lithobates clamitans) and the wood frog (Lithobates sylvatica). Cytotechnology 71, 757–768 (2019). https://doi.org/10.1007/s10616-019-00318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00318-1

Keywords

Navigation